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Abstract

We analyze the wave-packet dynamics scenario produced by Random Matrix The-

ory models with unconventional band-profile structures. Our motivation is to

understand the energy spreading of quantum systems with complex dynamics.

Examples of such systems include complex nuclei, atoms and molecules, quantum

dots, and Bose-Einstein Condensates in optical traps, which, under the influence

of an external perturbation, experience an energy redistribution of the initially

prepared state. Such a perturbation could be due to an external electric or mag-

netic field, a change in the confining geometry, or a residual interaction, among

other things. Of special interest in our analysis is the investigation of the time re-

laxation properties of a prepared state into a sea of other states (the continuum).

We find that, for a large family of power spectra characterized by a non-flat profile,

the survival probability P (t) might exhibit either exponential-like or power-law

decay, depending on non-universal features of the model. Still there is a universal

characteristic time t0 that does not depend on the functional form of the survival

probability decay. It is only for a flat power spectrum that we get a robust expo-

nential decay that is insensitive to the nature of the intra-continuum couplings.

Our analysis highlights the coexistence of perturbative and non-perturbative fea-

tures in the local density of states.
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1 Introduction

The central insight of Random Matrix Theory (RMT) modeling is that there is a

broad category of systems called complex quantum systems that have statistical

properties that are indistinguishable from the statistical properties of ensembles of

random matrices of large dimension. The results of RMT are universal, meaning

they are largely independent of the characteristics of any particular system. This

insight was introduced by Wigner while studying the statistical properties of the

spectra of complex nuclei [1]. The theory was extended significantly by Dyson,

Mehta, Porter and others, who showed that many of the relevant statistical prop-

erties of RMT ensembles can be computed analytically [2]. In recent years, RMT

has become a major theoretical tool in the field of quantum chaos [3], and it has

found applications in many areas of physics ranging from nuclear, atomic and

molecular physics to mesoscopic and mathematical physics (for a review see [4]).

Standard RMT models capture the universal aspects of complex systems [3, 5,

4]. However, in reality, there are also non-universal semi-classical structures that

make the use of general RMT inappropriate in particular situations. The study

of such structures is a major theme in past works regarding spectral [6] and wave-
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function statistics [7, 8]. Ten years ago, Cohen and Kottos initiated the study of

various time-dependent scenarios within the framework of RMT modeling, com-

paring the outcomes with those that have been obtained for real (non-RMT)

quantized Hamiltonians [9, 10, 11, 12, 13, 14, 15, 16]. Their main conclusion is

that a non-structured band-profile, as assumed in the standard RMT model, is

merely an idealization of “generic chaos.”

In the present thesis, we bring, for the first time, this theme into a new arena:

the theory of wave-packet dynamics in energy space, and we contrast our results

with the results of traditional RMT originally due to Wigner. Specifically, we

introduce a class of models with structured band-profiles that show distinct devi-

ations from previous studies. The most striking of our results is the identification

of a power-law relaxation process, in contrast to the expected and celebrated Fermi

Golden Rule (FGR) exponential decay.

The structure of the thesis is as follows:

• In Chapter 2 we will discuss the importance of parametric RMT models to

describe physical systems. We will connect a classical quantity (the power

spectrum of the fluctuations of the generalized force) with the band-profile

of the perturbation matrix. Many physical situations will be discussed that

can be studied using this methodology.

• Chapter 3 develops universal results from conventional RMT. The static

properties of the frequently encountered ensembles will be established. The

objective is to clearly understand the universal aspects of the eigenvalues and

eigenfunctions of these ensembles, so the non-universal features of particular
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systems can be appreciated.

• Chapter 4 reviews the dynamical properties of conventional RMT. Specif-

ically, we present the wave-packet dynamics scenario for an ensemble of

banded random matrices with flat band-profile. To this end, we first ana-

lyze a much simpler system, associated with the decay of a bound state into

the flat continuum in order to see more clearly how the Fermi Golden Rule

decay emerges in such types of problems. We then use these results to un-

derstand the time relaxation of the more physical Banded Random Matrix

(BRM) model.

• Chapter 5 is based on our recent contribution [17]. We consider the dy-

namical properties of ensembles of non-flat (structured band-profile) banded

random matrices. Following the approach of Chapter 4, we first analyze the

dynamics of a simplified system. Surprisingly, we find that the two models

follow different relaxation laws. Even though these laws take on different

functional forms, they still show limited agreement for a scaling law, indi-

cating the coexistence of perturbative and non-perturbative features in the

LDoS.

• Chapter 6 includes some brief concluding remarks that situates the thesis

in the context of current research in the field.

Our results (Chapter 5 and [17]) show, for the first time, how non-universal

features can lead to a relaxation process that is fundamentally different from the

standard Wigner (FGR) decay. As such, they constitute a major step towards un-
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derstanding quantum dissipation problems in the presence of semi-classical struc-

tures.
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2 Parametric Hamiltonians and

Physical Setups

The random matrix approach has been extended in several directions. In this

chapter we will be concerned with an extension of the approach to deal with

physical systems where the Hamiltonian H depends on some x. In general, x is

time dependent, i.e., x = x(t).

The prototypical system described by a parametric Hamiltonian is the piston

model, where a gas is contained inside a cavity, and x(t) represents the position

of a piston at time t. Our interest is in the case where we have a “one particle

gas” (note, however, that for low temperatures the solution of the one particle

system can be adapted to describe a gas of many weakly interacting particles).

This setup is shown in Figure 2.1 (left). The model assumes that the mass of

the piston is large compared to the mass of the particle. This ensures that the

collision of the particle with the piston does not affect the motion of the piston. A

quantum system that can be described by this model would be an electron cloud

of a large molecule. The “piston” in this case is the nucleus of the atom, and the
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Figure 2.1: (left) The piston model, (right) The conducting ring. Reproduced
from [18] with permission.

cavity is an approximation of the electric potential trapping the electrons near the

nucleus. A renewed interest in this model is anticipated in mesoscopic physics,

where the shape of a quantum dot can be controlled by gate voltages. In such a

case, v = ẋ has the interpretation of the piston’s velocity. Furthermore, we can

argue that there is a friction force proportional to the velocity v, against which

the piston is doing mechanical work. This mechanical work is dissipated, and the

gas heats up at a rate proportional to v2.

Another physical system described by parametric Hamiltonians is a dirty con-

ducting ring containing a charged particle. This is depicted in Figure 2.1 (right).

In this context, the parameter φ(t) is the magnetic flux through the hole in the

ring. The time derivative of the flux is the electromotive force induced on the

particle by Faraday’s law (ε = −φ̇(t)). This e.m.f. establishes a current around

the ring that is proportional to the e.m.f. itself. The proportionality factor is the

conductance G. This is, in fact, “Ohm’s Law.” The dissipated energy can either

be accumulated by the electrons (as kinetic energy), or else it may be transferred

11



to the lattice vibrations (phonons). In the latter case, we say that the ring is heat-

ing. The rate of heating varies like ε2, which is a statement of Joule’s law. This

is a very convenient model for electrical conduction because it does not involve

open geometries.

2.1 Semi-classical Considerations and Random

Matrix Theory Models

2.1.1 Classical Considerations

Suppose that H(x(t)) is a classical chaotic Hamiltonian that depends on the pa-

rameter x(t). Define δx = x(t) − x(0). We assume that δx is classically small,

which means that both H(x(0)) and H(x(t)) are generators of the same chaotic

classical dynamics. It is then possible to expand H to first order about x(0):

H(x(t)) = H(x(0)) + δxV (2.1)

for some V , which is due to the perturbation. From the analogy of Newtonian

mechanics, it is reasonable to define the generalized force to be,

F(t) ≡ −∂H
∂x

(2.2)

with mean value F = 〈F(t)〉. The angular brackets denote an averaging that

is either micro-canonical over some initial conditions or temporal (due to the
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assumed ergodicity). In the case where x is the displacement of the piston (or

wall element of a quantum dot), the fluctuating quantity F(t) has the meaning

of a Newtonian force. In the situation where x is the magnetic flux, then F(t)

represents the electric current. A quantity that will be useful later on in the

argument is the autocorrelation function, C(τ), of F which is defined to be,

C(τ) = 〈[F(t) − F ][F(t + τ) − F ]〉 (2.3)

where again the averaging is either micro-canonical or temporal.

For generic chaotic systems (described by smooth Hamiltonians), the autocor-

relation function behaves as C(τ) ∼ e−t/τcl , i.e., the fluctuations are characterized

by a short correlation time τcl, after which the correlations are negligible. In

generic circumstances, τcl is essentially the ergodic time, which is related to the

Lyapunov exponent, λ by τcl ∼ 1/λ. The corresponding energy scale ωc = 1/τcl is

also known in the literature as the “non-universal” energy scale [19], or (in case

of diffusive motion) as the Thouless energy [20].

2.1.2 Semi-classical Considerations

One can show that, in the semi-classical limit, there is a strong relationship be-

tween the structure of a Hamiltonian of a quantum system in the basis of the

unperturbed Hamiltonian and the power spectrum of the perturbation operator.
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Let H = H0 + δxV be some Hamiltonian. Specifically, we will show that,

〈
|Vjk|2

〉

j
=

C̃
(

ω =
Ej−Ek

~

)

2πg(Ek)
(2.4)

where C̃(ω) is the power spectrum of V in the classical limit, and g is the density

of states. This argument is due to Feingold and Peres [21] (see also Prosen [22]).

Let us start our analysis by writing the correlator in the interaction picture, so

we will have:

∑

k

ei(Ej−Ek)τ/~|Vjk|2 =
∑

k

〈j| eiEjτ/~V |k〉 e−iEkτ~ 〈k|V |j〉

= 〈j| eiH0τ/~V e−iH0τ/~

︸ ︷︷ ︸

V (τ)

V |j〉

= 〈j|V (τ)V (0) |j〉 (2.5)

In the semi-classical limit, quantum mechanical expectations correspond to a

micro-canonical average. Therefore,

∑

k

ei(Ej−Ek)τ/~|Vjk|2 = 〈V (τ)V (0)〉j (2.6)

where 〈·〉j signifies the micro-canonical average with respect to Ej. Due to the

ergodicity implied by the chaoticity of the system, the micro-canonical average is

identical to the the time average. In other words,

〈V (τ)V (0)〉 = 〈V (τ + t)V (t)〉t = Cj(τ) (2.7)
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where 〈·〉t signifies the time average, and Cj(τ) is the autocorrelation function.

The subscript denotes the micro-canonical averaging over the Ej energy level. In

the semi-classical limit, i.e., continuous energy spectrum, the sum
∑

k becomes

the integral
∫

g(Ek)dEk, where the function g is the density of states. So we have,

∫

ei(Ej−Ek)τ/~|VEj ,Ek
|2g(Ek)dEk = Cj(τ). (2.8)

The left hand side has the form of a Fourier transform. The relationship between

the autocorrelation function and the power spectrum, C̃(ω), is:

1

2π

∫

eiωτ C̃(ω)dω = C(τ). (2.9)

This establishes the validity of Equation (2.4).

There are many examples that show the validity and usefulness of Equation

(2.4). Cohen and Kottos [23] demonstrate its validity in describing accurately a

particle trapped in a 2D well. The system is described by some parametric Hamil-

tonian H(Q,P ; x) where (Q,P ) are canonical coordinates, and x is a parameter.

In the example under consideration,

H =
1

2
(P 2

1 + P 2
2 + Q2

1 + Q2
2) + xQ2

1Q
2
2. (2.10)

The classical dynamics of this Hamiltonian has a chaotic regime. The particle is

evolved in the chaotic regime far in time. The Poincaré plot was checked to ensure

the trajectory covered the phase space ergodically. From the description of the
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Figure 2.2: The power spectrum inferred from the classical dynamics is plotted
with the power spectrum inferred from the matrix elements of the
matrix elements of the perturbation operator of the quantized Hamil-
tonian. The inset is a representative random matrix. Taken from
[23].
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Figure 2.3: (left) The geometry of the 2D wires used in the experiment [24]
(center) the network theoretic representation of the problem from [25]
(right) an example random matrix corresponding to the network the-
ory model [25].

Hamiltonian, it follows that the generalized force is given by,

F = −∂H
∂x

= −Q2
1Q

2
2. (2.11)

So then the autocorrelation function and power spectrum can be computed for

this particular trajectory. Since the trajectory covers phase space ergodically, this

autocorrelation function and power spectrum ought to be the same for any similar

trajectory. The next step is to quantize the Hamiltonian. It has a straightforward

representation in the basis H(Q,P ; 0), but we wish to express it in the basis of

H0 = H(Q,P ; 1). This diagonalization was performed numerically. From this

the perturbation matrix can be extracted, and the power spectrum, C̃(ω) can be

computed. Thus, two techniques can be used to arrive at the power spectrum,

and they both should yield the same result. Figure 2.2 shows that both methods

produce strikingly similar results.

Another physical setup would be superconductivity in 2D wires. Figure 2.3
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Figure 2.4: Comparison of the power spectrum inferred from the classical dynam-
ics of the BHH [26], and the power spectrum inferred from the matrix
elements of the perturbation operator of the quantized problem.

(left) shows a physical setup where a superconductor is allowed to flow through

wires defined with the particular geometry described in the figure. This is the

experiment described in [24]. The system admits a network model treatment,

depicted in Figure 2.3 (center). An example random matrix from such a network

model is shown in Figure 2.3 (right).

Hiller, Kottos, and Geisel [26] also provide another example of the use of Equa-

tion (2.4) in their study of the Bose-Hubbard Hamiltonians, relevant for the study

of Bose-Einstein Condensates. The agreement between the quantum mechanical

expression for the power spectrum and the classical expression is shown in Figure

2.4.

In all these examples, we see that generic chaotic systems have perturbation
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operators (represented in the basis of the unperturbed Hamiltonian) that posses

a finite bandwidth ωc. This bandwidth is related with the classical correlation

time by ωc = 2π~/τcl. We will see later on in this thesis that this novel energy

scale appearing due to the chaotic nature of the classical dynamics will affect

significantly the quantum evolution.

2.2 Conclusion

We have seen that there are many physical systems that can be described with

parametric Hamiltonians, and we have developed a semi-classical connection be-

tween the classical power spectrum of a generalized force and structured random

matrices with a finite band-profile. This motivates the mathematical models that

we will investigate in the remainder of this thesis. These models share this generic

feature (finite bandwidth) of physical systems. The main assumption that we will

adopt is that, due to the complexity of the underlying classical dynamics, the ma-

trix elements of the Hamiltonian matrices can be modeled as independent Gaus-

sian distributed random variables with variance determined by the classical power

spectrum. This is operating within the paradigm of RMT proposed by Wigner,

who originally proposed ensembles of random matrices as models to describe the

statistical properties of the spectra of complex nuclei and atoms.
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3 Basic Elements of RMT:

Universality in the Eigenvalue and

Eigenvector Statistics

The Random Matrix Theory of Hamiltonian systems is based on the assump-

tion that, for complex systems, we know very little about the exact Hamiltonian

matrix of the system we are considering except for certain symmetry properties.

These symmetry properties impose restrictions on the form of the Hamiltonian

matrix. One of the most obvious examples is the requirement that a Hamiltonian

operator H, describing a physical system, is in general hermitian H† = H and

thus all matrices modeling a Hamiltonian must themselves be hermitian. This

ensures that its eigenvalues, the allowed energies of the system, are real. Further

symmetry considerations can also exist, and their consideration can significantly

simplify the structure of the Hamiltonian matrix. For example a request for a

time reversal invariance on the Hamiltonian matrix (and for the case of integer

spins) leads to the further requirement that the matrix has to be real symmetric.
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Various other considerations can lead to other constrains as far as the matrix

elements of the Hamiltonian matrix are concerned. In this section, we will focus

on the RMT modeling of these two types, i.e., Hamiltonian matrices that are her-

mitian or real symmetric. The main assumption underlying the RMT paradigm

is that the elements of the Hamiltonian matrix are themselves independent ran-

dom variables. Given this assumption, we can then determine their probability

distribution by requiring that the information contained in the random Hamil-

tonian matrix is minimal [5]. This leads to a Gaussian distribution for matrix

elements. The resulting RMT ensembles that describe complex hermitian or real

symmetric matrices are called the Gaussian Unitary Ensemble (GUE) and the

Gaussian Orthogonal Ensemble (GOE), respectively. One of their main proper-

ties is their invariance under unitary or orthogonal transformations, respectively.

Our main interest in this chapter is to investigate the statistical properties of their

corresponding eigenvalues and eigenvectors.

3.1 Unfolding the Spectra

Before we can discuss any results of RMT, it is necessary to briefly mention a

procedure that is always performed in RMT calculations in order to make the

predictions of RMT comparable with a physical situation. The important point

to keep in mind is that RMT predictions are always about the fluctuations around

an average, but they are insensitive to what that average actually is. The average

arises due to the particulars of the system, which is necessarily a non-universal.

This non-universality is removed from the analysis by the process of unfolding
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the spectra. This topic is described in detail in Bohigas [27]. We describe this

process for an arbitrary hermitian matrix, H, coming from some collection of

random matrices H. Because H is hermitian, it has real eigenvalues. Let us order

them in the following way:

E1 ≤ E2 ≤ · · · ≤ Ek ≤ · · · . (3.1)

We can define the staircase or counting function, N(E) to count the number of

eigenvalues less than or equal to E. The collection H defines some
〈
NH(E)

〉
,

where the brackets denote averaging over all members of the system H. So then

we can write,

NH(E) =
〈
NH(E)

〉

︸ ︷︷ ︸

smooth term

+ δNH(E)
︸ ︷︷ ︸

fluctuating term

(3.2)

The smooth term is system dependent (non-universal). We wish to transform the

eigenvalues of H in such a way that the smooth term becomes trivial. This is done

through the transformation that sends the energies {E1, E2, . . .} to {x1, x2, . . .}

by,

Ek 7→
〈
NH(Ek)

〉
= xk. (3.3)
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The new collection of unfolded energies {x1, x2, . . .} has a trivial smooth term.

Namely,

〈N∗(x)〉 = x. (3.4)

And thus {x1, x2, . . .} all have an average separation of one. In other words, the

mean level spacing, ∆, of the new collection of eigenvalues is unity.

3.2 Eigenvalue Statistics

The simplest and most frequently used measure of the complexity of a quan-

tum system in the field of quantum chaos is the level spacing distribution. This

statistical measure captures the sub-~ features of the energy spectrum that are

universal and follow RMT predictions. It is important to understand what the

universal features are, because one of the objectives in this thesis is to draw atten-

tion to the importance of non-universal (system specific) features that affect the

response and quantum dynamics. Theses non-universal features are “fingerprints”

of the underlying classical dynamics. Following the original thinking of Wigner,

the presentation below will only consider 2 × 2 random matrices. Pedagogically,

this is the most effective approach to understand the origin of correlations in the

spectrum of RMT models, and the predictions very accurately correspond to the

general N × N case.

The relevant eigenvalue statistic will be the nearest neighbor level spacing.

Define the nearest neighbor spacing for the nth level of some Hamiltonian H to
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be,

Sn =
En − En−1

∆
(3.5)

where ∆ is the mean level spacing. Since we assume that the spectra has been

unfolded, we can say that ∆ = 1. Thus the nearest neighbor level spacing is

simply denoted by S. The nearest neighbor level spacing distribution measures

the probability that there are no eigen-energies distance s away from a fixed

eigen-energy, and also simultaneously that there is an eigen-energy in the region

[s, s+ds]. We now restrict the derivation to 2×2 matrices in the GOE and GUE.

This result, surprisingly, differs only slightly from the arbitrary N × N case1.

Let H be a Hamiltonian. So then

H =






H11 H12

H∗
12 H22




 =






A X + iY

X − iY B




 (3.6)

where A,B, X and Y are real numbers. Following the principles of RMT, we will

treat them as random variables. In the GOE case, H must be real symmetric, so

Y = 0. For the GUE case, there is no restriction on Y . Since H is a 2× 2 matrix,

it can have at most two eigenvalues. So there is just one nearest neighbor, and

call its spacing S.

We can compute S from the eigenvalues of H. By definition, this is:

S = E2 − E1 (3.7)

1See [2] pp. 64-69 for GOE case, and p. 78 for GUE.
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where E1 and E2 are the eigenvalues of H. It is straightforward to show that,

S =
√

W 2 + X2 + Y 2 (3.8)

where W = B − A. For real symmetric H, we have that Y = 0. Next, we

can assume that X is a Gaussian random variable with mean µ = 0 and standard

deviation σ. Furthermore, we assume that A and B are Gaussian random variables

with mean µ = 0 and standard deviation σ/
√

2. Thus W is a Gaussian with mean

µ = 0 and standard deviation σ, by a property of sums of Gaussians. The problem

is to compute fS(s), the probability density function of S, where S is a function

of the random variables X and W . Since X and W are independent random

variables, we can write that:

fS(s) ∝
∫∫

δ(s −
√

w2 + x2) e−(x2+w2)/(2σ2)dxdw (3.9)

This integration is easily performed in polar coordinates (r2 = x2 + y2):

fS(s) ∝
∫∫

δ(s − r)e−r2/(2σ2)rdrdθ ∝
∫

δ(s − r)e−r2/(2σ2)rdr

∝ se−s2/(2σ2) (3.10)

Integration over all s will determine the normalization condition. Next, we con-

sider the GUE case. In the GUE case there is no longer the restriction that

Y = 0. Instead Y is also a Gaussian random variable with mean µ = 0 and
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standard deviation σ. So then,

fS(s) ∝
∫∫∫

δ(s −
√

w2 + x2 + y2) e−(w2+x2+y2)/(2σ2)dwdxdy. (3.11)

This integration is easily performed in spherical coordinates (r2 = w2 + x2 + y2).

We use the convention that the Jacobian is r2 sin θ.

fS(s) ∝
∫∫∫

δ(s − r) e−r2/(2σ2)r2 sin θdrdθdφ

∝ s2e−s2/(2σ2) (3.12)

For the sake of comparison, we will now derive the nearest neighbor spacing dis-

tribution for an integrable system. This is done more rigorously in Berry [28]. For

the integrable case, the eigen-energies are uncorrelated random variables, i.e., the

Hamiltonian is a diagonal matrix where the diagonal elements are uncorrelated

random variables. Without loss of generality, say that this region of unfolded spec-

tra is an energy window [0, A], with N levels in this region. We will eventually

take N → ∞. We will now compute fS(s)ds by directly computing the prob-

ability that there is gap of length s in the region [0, A] with no eigen-energies,

and multiplying that by the probability of finding an eigen-energy in the region

[s, s + ds].

The first step is to compute the probability that there are no eigen-energies in

the region [0, s]. For a single eigen-energy, the probability that it is in the region

[0, s] is s/A, because each eigen-energy is assumed to be uniformly distributed.

So the probability of not being in the region is 1 − s/A. The probability for N
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levels like this to not be in the region is thus (1 − s/A)N . We can express A in

terms of the number of sites, N , and the mean level spacing, ∆ = 1, by A = N∆.

So taking the N → ∞ limit, we have that:

P (no eigen-energies between [0, s]) = lim
N→∞

(

1 − s

N

)N

= e−s (3.13)

This is almost what we are looking to compute, but the nearest neighbor level

spacing is the probability of finding no eigen-energy in [0, s] and the probability of

finding an eigen-energy in the space [s, s+ds]. We have computed the former. We

argue that the latter is simply some constant multiplied by ds. It is not necessary

to specify what the constant is, because it can be determined by normalizing the

probability distribution. The important point is that this value does not depend

on s, which is reasonable because the uniform distribution of the eigen-energies.

So then we can conclude that the nearest neighbor spacing is,

fS(s)ds = e−s × kds = e−sds (3.14)

where k = 1 by normalization. Therefore fS(s) = e−s.

The results from above can be summarized as follows:

fS(s) ∝







s0e−s integrable systems

s1e−s2/(2σ2) GOE

s2e−s2/(2σ2) GUE

(3.15)

Figure 3.1 plots these various distributions. For small values of s, sn dominates
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Figure 3.1: Level spacing distributions for the three classes of systems consid-
ered. The behavior near the origins clearly shows the level repulsion
of chaotic systems.
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the exponential. So the ensemble determines how strongly adjacent levels repel

each other. The way to understand this is by observing that the GUE involves

more uncorrelated random variables compared with the GOE. This means that

near by spacings are less likely because it is more rare for the random variables

to be arranged in the required way to get near by level spacings.

3.3 The n-Level Correlator, Cluster Function and

Form Factor

In the last section, we found that energy level repulsion is an important feature of

the chaoticity of a system (i.e., integrable motion experienced no level repulsion,

but chaotic motion did). Following this observation, we define several distributions

that probe the clustering of levels. These will be useful later on in Section 4.1.4

when we consider the decay of a bound state into a sea of states with energy levels

drawn from a Gaussian ensemble.

We begin by defining a multivariate probability density function for the eigenval-

ues of an ensemble of random N×N matrices H. Call such a p.d.f. pH(x1, . . . , dxN),

where pH(x1, . . . , dxN)dx1 · · · dxN is the probability of finding the eigenvalues of a

representative in the ensemble to be in the interval [x1, x1 +dx1]×· · ·× [xN , xN +

dxN ]. Note that such a definition undercounts the description of the eigenvalues

because it is sensitive to the order they appear. For example, if H is a 2 × 2

ensemble, then the probability of getting eigenvalues {a, b} is evenly split between

the quantities pH(a, b)dx1dx2 and pH(b, a)dx1dx2. A more relevant quantity will
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be insensitive to indexing, i.e., (a, b) should be the same as (b, a). This is ac-

complished by a combinatorial factor that appears before the integral in the next

definition. The next step to understand level clusterings is to define a quantity

that characterizes the probability of finding n eigenvalues {x1, . . . , xn} irrespec-

tive of indexing and placing no restrictions on the other eigenvalues. This is the

marginal probability density function of n variables of pH(x1, . . . , xN) multiplied

by a combinatorial factor to make the probability insensitive to labeling. This is

called the n-level correlation function, and it is written:

Rn(x1, . . . , xn) =
N !

(N − n)!

∫

· · ·
∫

pH(x1, . . . , xN)dxn+1 · · · dxN (3.16)

From here we go to a quantity that further emphasizes the clustering of levels,

called the n-point cluster function. Although there is a general description for

all n of them, we only need to understand 2-point cluster function. This is given

by,

T2(x1, x2) = R1(x1)R2(x2) − R2(x1, x2). (3.17)

The N → ∞ limit of T2(x1, x2) with unfolded spectra is written Y2(x1, x2). It

can be shown that Y has the property that it only depends on the quantity

r = |x1 − x2|. The two-level form factor is defined to be the Fourier transform

of Y2(r).

b(k) =

∫

e2πikrY2(r)dr (3.18)
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This quantity will be essential to the understanding the revivals of the decay into

a sea of discrete states. In particular, we will need the form factor for which ever

ensemble the sea of states is described by. The form factor for the GOE is given

by2

b(k) =







1 − 2|k| + |k| ln(1 + 2|k|) |k| < 1

−1 + |k| ln
(

2|k|+1
2|k|−1

)

|k| ≥ 1
(3.19)

For the GUE, we have,

b(k) =







1 − |k| |k| < 1

0 |k| ≥ 1
(3.20)

These are plotted in Figure 3.2.

3.4 Eigenvector Statistics

The eigenvalue statistics are the first step towards an understanding of the dynam-

ics. The next (more demanding) step is to understand the statistical properties

of the eigenstates. Here we present an analysis of the distribution of their compo-

nents based on the so-called random wave approximation, first promoted by Berry

[29]. The derivation below is found in [3].

Let ~Ψ = (Ψ1, Ψ2, . . . , Ψn) be an eigenvector of a random matrix. We wish

to compute the probability density function of each component, fΨj
(x) where

2See Mehta [2] pp. 59-61 for GOE and pp. 75-77 for GUE.
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Figure 3.2: Plots of the form factor for the GOE and GUE cases (Equations (3.19)
and (3.20)).

j = 1, . . . , n. By symmetry, each Ψj should be independent of j, so we will call

the quantity we are computing simply fΨ(x). We will now derive the result for the

GOE case, and show how the argument is easily modified to apply to the GUE

case. The ansatz is that the eigenvectors of a random matrix are a superposition

of random plane waves. So in position space we have,

Ψ(~r) =
∑

n

an cos(kn~r − φn) (3.21)

where each kn is a random unit vector, each φn is a random phase, and an are

random amplitudes. Note that in the GUE case, an would be a random complex

number.
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We wish to calculate,

fΨ(x) =

〈

δ

(

x −
∑

n

an cos(kn~r − φn)

)〉

(3.22)

where 〈·〉 denotes averaging over all phases, amplitudes, and directions. We can

write the delta function by a Fourier expression, leading to,

fΨ(x) =
1

2π

∫

eixt

N∏

n=1

〈
e−itan cos(kn~r−φn)

〉
. (3.23)

Using the Taylor expansion of the exponential,

〈
e−itan cos(kn~r−φn)

〉
= 1 − it 〈an cos(kn~r − φn)〉 − t2

2

〈
a2

n cos2(kn~r − φn)
〉

+ · · ·

We have that 〈an cos(kn~r − φn)〉 = 0 because every positive contribution has an

associated negative contribution of the same magnitude. On the other hand,

〈a2
n cos2(kn~r − φn)〉 = 〈a2

n〉 /2. This is because,

a2 cos2 θ + a2 sin2 θ = a2 =⇒
〈
a2 cos2 θ

〉
+

〈
a2 sin2 θ

〉
=

〈
a2

〉
. (3.24)

At the same time, due to symmetry, 〈a2 cos2 θ〉 =
〈
a2 sin2 θ

〉
, so 〈a2 cos2 θ〉 =

〈a2〉 /2. Putting this all together, we can conclude

〈
e−itan cos(kn~r)−φn

〉
= 1 − t2

4

〈
a2

n

〉
+ · · · . (3.25)

We can then use the normalization of Ψ(r) to come up with an expression for
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〈a2
n〉.

1 =

∫

|Ψ(~r)|2dA

=
∑

n,m

∫

a†
nam cos(kn~r − φn) cos(km~r − φm)dA (3.26)

But by the orthonormal properties of the cosine, the integral only contributes a

nonzero value just in case n = m, and then the contribution is 1/2. Thus,

1 =
A

2

∑

n,m

a†
namδn,m =

A

2

∑

n

a2
n. (3.27)

If we were modify the argument to address the GUE case, we would find that

instead that (A/2)
∑

n(Re [an]2 + Im [an]2) = 1. But continuing in the GOE case,

we have,

〈
a2

n

〉
=

2

AN
(3.28)

where N is the number of waves contributing to the original superposition Ψ. For

the GUE case, we can say that
〈
Re [an]2

〉
=

〈
Im [an]2

〉
, and then Equation (3.28)

simply needs to be adjusted by a factor of two. This factor of two will persist

throughout the remainder of the argument in the GUE case. So backing up, we

can write,

〈
e−itan cos(kn~r−φn)

〉
= 1 − t2

2AN
+ · · · (3.29)

34



This is just one factor in a product, but the other factors are identical, so we

really have N copies of the above. We are interested in the limit as N → ∞. So

we have:

lim
N→∞

N∏

n=1

〈
e−itan cos(kn~r−φn)

〉
= lim

N→∞

(

1 − t2

2AN
+ · · ·

)N

= e
−t2

2A (3.30)

So finally, for the GOE:

fΨ(x) ∝
∫

eixte
−t2

2A dt

∝ e−Ax2/2 (3.31)

where the proportionality is determined by normalization. Similarly, the GUE

result only differs by a factor of two as argued above. Thus the GUE result is,

fΨ(x) ∝ e−Ax2/4 (3.32)

where again the proportionality is determined by normalization. This is shown to

be in agreement with the numerics shown in Figure 3.3. The deviations are due

to “scarring,” which has been extensively studied by Heller [8].

3.5 Conclusion

In this chapter we have discussed the predictions of RMT for the distribution

of level spacings and the wavefunction components. We began by describing the

procedure of unfolding the spectra, which is a method that removes some of the
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Figure 3.3: The nodal lines of a typical eigenfunction in a quarter stadium (a) and
amplitude distribution for the same eigenfunction (b). Reproduced
from [3].

non-universal system-specific features of the eigenvalue distribution, in order to

allow for a study of universal fluctuations. With this as a foundation, we went on

to compute various statistical measures about the eigenvalues and eigenvectors.

We found that chaotic systems have levels that repel each other in contrast with

integrable systems, which do not. The significance of level repulsion led to defining

various eigenvalue correlation functions, though we will not use them in earnest

until the next chapter.
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4 Wave-Packet Dynamics in Energy

Space: The Flat Continuum

This chapter considers the problem of the decay of a prepared state |λ〉 into a sea

of other states {|E〉}. This class of problems has broad applications to atomic,

nuclear, and mesoscopic physics. The prepared state is coupled to the other

states by some perturbation which will be defined by its power spectrum C̃(ω).

Because of this coupling, the prepared state will decay into the other states. The

primary quantity that we will consider to understand this process is the survival

probability, defined to be:

P (t) = 〈λ|λ(t)〉 (4.1)

where |λ(t)〉 is the time evolution of the state |λ〉. The most physically relevant

situation is where the state |λ〉 is coupled to the collection {|E〉} in the same way

that every element in {|E〉} is coupled to every other element of {|E〉}. Thus

C̃(ω) is the power spectrum of every energy level. In this thesis, such a model will

be referred to as the Wigner Model (WM). Deriving an expression for the survival
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probability of the WM is analytically challenging due to the combinatorics of the

problem, i.e., the number of possible ways to make a round trip is vast. Due

to this difficulty, a simplified model is used in the hope that it will capture the

important features of the WM. This simplified model neglects the coupling within

the sea of states. In other words, the state |λ〉 has been “singled out” to be the

prepared state by the topology (level connectivity) of the model. This model

will be referred to as the Friedrichs Model (FM). The combinatorial difficulties

are no longer present in this case because a round trip is easily described by

|λ〉 → |E〉 → |λ〉 for some state |E〉. The dynamics of the FM is tractable, and

the derivation is presented in Section 4.1. For the FM, we consider two possible

scenarios involving the energy levels of {|E〉}. First we will consider the case where

the sea of states is a continuum, i.e., we will take the mean level spacing to zero.

We find the usual Wigner (Fermi Golden Rule) decay scenario, i.e., the survival

probability decays like e−Γt for some Γ, which is proportional to the square of the

perturbation strength. After doing this, we will modify the argument slightly to

consider the effect of giving the energy levels of {|E〉} level statistics of ensembles

of random matrices. Here the survival probability also decays like e−Γt, but the

decay is followed by a revival whose shape is determined by the form factor of the

ensemble (see Section 3.3).

After understanding the dynamics of the Friedrichs model, we attempt to use

the results to make meaningful statements about the WM. We find that there is

good agreement between the results in both the time and energy domains. This

fact is significant for the analysis that will take place in Chapter 5, where we will
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see that this good agreement between the FM and WM depends on the particular

choice of C̃(ω) considered in this chapter.

4.1 The Friedrichs Model

In this section, we calculate the survival probability of a bound state decaying

into the flat continuum. A version of this argument can be found in [30]. This

type of presentation has the advantage of illuminating the importance of level

statistics of the unperturbed Hamiltonian in the relaxation process of the bound

state. We will consider both the continuum limit and also the discrete problem

with unperturbed eigen-energies distributed with GOE statistics.

4.1.1 Statement of the Model

The system is prepared in the state |λ〉 at time t = 0, where |λ〉 is an eigenstate

of some Hamiltonian H0. At time t = 0, a perturbation V is introduced so that

the total Hamiltonian H is H0 + V . This perturbation V couples the state |λ〉 to

the other eigenstates of H0, but there is no coupling other than this. The power

spectrum of the generalized force at the |λ〉 energy level is given by,

C̃λ(ω) = 2πε2. (4.2)

Following the reasoning of Wigner, we will assume that we can treat the pertur-

bation operator V as a random matrix. In other words, if |µ〉 is an eigenstate of
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Figure 4.1: Graph theoretic representation of the Friedrich model.
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Figure 4.2: Matrix representation of the Hamiltonian H written in the basis of
H0. The matrix elements “ε” denote random variables of standard
deviation ε.
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H0, then

〈λ|V |µ〉 = 〈µ|V |λ〉 = Vλµ ∼ N(0, ε2) (4.3)

and if |µ′〉 is an eigenstate not equal to |µ〉, then

〈µ|V |µ′〉 = 〈µ′|V |µ〉 = 0. (4.4)

The notation N(0, ε2) denotes a Gaussian distributed random variable with mean

0 and variance ε2. The latter condition comes from Equation (2.4), which connects

the power spectrum and the variance of matrix elements. A schematic represen-

tation of this model is depicted in Figure 4.1, and the Hamiltonian H is shown

in Figure 4.2. For the derivation that follows, |µ〉 is a representative eigenstate of

H0 (with |µ〉 6= |λ〉), and |i〉 is a representative state of H. In other words

H0 |µ〉 = E(0)
µ ; H |i〉 = Ei |i〉 ; H0 |λ〉 = E

(0)
λ |λ〉 .

4.1.2 The Local Density of States

Let |λ(t)〉 be the time evolution of the state |λ〉. The objective is to compute the

survival probability of the state |λ〉. That is, the quantity: P (t) = |〈λ|λ(t)〉|2. We

observe that1,

|λ(t)〉 = e−iHt |λ〉 = e−iHt

(
∑

i

|i〉 〈i|
)

|λ〉 =
∑

i

e−iEit〈i|λ〉 |i〉 . (4.5)

1Note that these calculations are performed in units where ~ ≡ 1.
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Thus the survival probability amplitude, α(t) = 〈λ|λ(t)〉, is

α(t) = 〈λ|λ(t)〉 =
∑

i

e−iEit〈λ|i〉〈i|λ〉 =
∑

i

e−iEit|〈λ|i〉|2. (4.6)

This shows that the survival probability amplitude is the discrete Fourier trans-

form of |〈λ|i〉|2. A quantity that is closely related to |〈λ|i〉|2 is called the Local

Density of States or LDoS, and it is defined to be

ρ(ω) =
∑

i

|〈λ|i〉|2δ(ω − Ei). (4.7)

The quantity |〈λ|i〉|2 is called the LDoS kernel. Thus, the Fourier transform of

the LDoS is the survival probability amplitude.

A few words are in order regarding the definition of the LDoS, and its impor-

tance in physical applications. The LDoS, also known as the strength function,

describes an energy distribution. Conventionally it is defined as follows:

ρ(ω) = − 1

π
〈λ| Im

[
G+(ω)

]
|λ〉 (4.8)

where G+(ω) = 1/((ω+i0)1−H0) is the retarded Green’s function. We show that

these definitions are equivalent in Appendix B.1. The LDoS is important in the

studies of chaotic or complex conservative quantum systems that are encountered

in nuclear physics, as well as in atomic and molecular physics. Related applications

may be found in mesoscopic physics. Going from H0 to H may signify a physical

change of an external field, switching on a perturbation, or a sudden change of an
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effective interaction as in molecular dynamics. Here we will present a derivation

of the LDoS kernel (occasionally, we will refer to this as the LDoS) for the FM.

Straightforward algebraic manipulation allows us to write a generic state |i〉 of

H as

|i〉 =

|λ〉 +
∑

µ

cµ |µ〉
√

1 +
∑

µ

|cµ|2
. (4.9)

for some collection of cµ’s depending on the state |i〉 (see Appendix A.1 for details).

Given Equation (4.9) and the eigenvalue equation H |i〉 = Ei |i〉, we can conclude

that

H[|λ〉 +
∑

µ

cµ |µ〉] = Ei[|λ〉 +
∑

µ

cµ |µ〉]. (4.10)

Multiplying both sides of this equation by 〈λ| and 〈µ| leads to the following two

relations:

〈λ| (H0 + V )[|λ〉 +
∑

µ

cµ |µ〉] = 〈λ|Ei[|λ〉 +
∑

µ

cµ |µ〉]

∴ E
(0)
λ +

∑

µ

Vλµcµ = Ei (4.11a)

〈µ| (H0 + V )[|λ〉 +
∑

µ

cµ |µ〉] = 〈µ|Ei[|λ〉 +
∑

µ

cµ |µ〉]

∴ Vλµ + E(0)
µ cµ = Eicµ (4.11b)
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Equation (4.11a) will be used later. Solving Equation (4.11b) for cµ gives cµ =

Vλµ

Ei−E
(0)
µ

. Substituting this into Equation (4.9) gives,

|〈λ|i〉|2 =



1 +
∑

µ

[

|Vλµ|
Ei − E

(0)
µ

]2




−1

(4.12)

This expression is true for all possible Vλµ’s and E
(0)
µ ’s. We will compute the

average LDoS kernel of the ensemble, which is given by

〈
|〈λ|i〉|2

〉
=

〈

1 +
∑

µ

[

|Vλµ|
Ei − E

(0)
µ

]2




−1〉

(4.13)

By properties of the expectation value of independent random variables, we are

free to replace every 〈|Vλµ|2〉 with ε2. To approach the continuum, we will assume

that the energies of the unperturbed Hamiltonian follow a picket fence distribution

with mean level spacing ∆. Eventually we will take the limit as ∆ approaches

zero. The picket fence distribution means that the unperturbed energies are of

the form E
(0)
µ = E

(0)
λ + ∆ · µ where µ is an integer. Leaving to the Appendix A.2

the technical details, we write below the final expression for the LDoS:

|〈λ|i〉|2 =
ε2

(Γ/2)2 + (E
(0)
λ − Ei)2

. (4.14)

where

Γ =
2πε2

∆

√

1 +

(
∆

πε

)2

.
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4.1.3 The Continuum Limit

The next step is to take the continuum limit. This means taking the limit as ∆

approaches zero, but this condition is not strong enough. If we naively set ∆ → 0,

then the quantity Γ would diverge, and the LDoS would be meaningless. In order

for this to not happen, we must take the limit carefully. In particular, we must

write,

lim
∆→0

Γ∆ = const. (4.15)

This will ensure that Γ does not blow up in the continuum limit. In this limit, we

find that,

Γ = 2π
ε2

∆
(4.16)

Thus the expression for the LDoS kernel is,

|〈λ|i〉|2 =
1

π

(Γ/2)∆

(Γ/2)2 + (E
(0)
λ − Ei)2

. (4.17)

We have been discussing the LDoS kernel all the time, but now we will discuss

the LDoS itself:

ρ(ω) =
∑

i

|〈λ|i〉|2δ(ω − Ei). (4.18)

In the continuum limit,

∑

i

7→
∫

dω′

∆
.
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Therefore we can conclude that in the continuum limit, the LDoS is,

ρ(ω) =

∫ ∞

−∞

1

π

(Γ/2)¡¡∆

(Γ/2)2 + (E
(0)
λ − ω′)2

δ(ω − Eω′)
dω′

¡¡∆
. (4.19)

Lastly, we arrive at our final expression for the LDoS,

ρ(ω) =
1

π

(Γ/2)

(Γ/2)2 + (E
(0)
λ − ω)2

, (4.20)

which is a Lorentzian. Recall that the Fourier transform of LDoS is the survival

probability amplitude. Thus, the survival probability amplitude is α(t) = e−Γt/2,

and substituting into the definition of the survival probability, we conclude that

P (t) = |α(t)|2 = e−Γt. (4.21)

Figure 4.3 shows the results of a numerical simulation of the model under consider-

ation. The simulations were performed by numerical integration of the Shrödinger

equation in a Hilbert space of size N . The ensemble consisted of 100 random

matrices with the structure described as above. We observe that there is good

agreement with the theory with respect to the functional form (exponential decay)

as well as the scaling parameter (1/Γ). Note that in these simulations, and all

others using this simulator, ∆ = 1.
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Figure 4.3: Survival probability for various perturbation strengths with scaled
time t0 = 1/Γ.
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4.1.4 Energy Distributions

Rather than taking a picket fence energy distribution in the continuum limit, it

is possible to use the argument above to study the importance of discreteness

and level distributions on the dynamics of the system. We will suppose that

the unperturbed energies of H0 come from some RMT ensemble. This argument

follows closely the argument presented by Mello, et al. [31]. We begin by writing

the kernel of the LDoS as the sum of a smooth and fluctuating component. This

is reminiscent of the procedure used to unfold the spectra. That is to say,

|〈i|λ〉|2 = w(Ei) + δwi (4.22)

where w(Ei) is the smooth part and δwi represents the fluctuations about the

smooth part. Because the LDoS kernel is normalized, it follows that,

∑

i

w(Ei) +
∑

i

δwi = 1 (4.23)

A quantity that will be useful for this analysis is

W =
∑

i

w(Ei). (4.24)

Such a quantity is called a linear statistic, and there exists some mathematical

machinery for dealing with linear statistics. In particular, we will be looking to

compute their variance. What we will show is that we can express the survival

probability in terms of a linear statistic, like the one defined above. This is
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because,

P (t) =
∑

i,j

wiwje
i(Ej−Ei)t

=
∑

i,j

(w(Ei) + δwi)(w(Ej) + δwj)e
i(Ej−Ei)t.

≈
(

∑

i

w(Ei)e
−Eit

)2

(4.25)

and
∑

i w(Ei)e
−Eit =

∑

i wt(Ei) is a linear statistic. Call this α(t), which is the

survival probability amplitude. Now the variance of α(t) is

〈
α†(t)α(t)

〉
− 〈α(t)〉

〈
α†(t)

〉
(4.26)

We will not prove it here2, but it can be shown that this variance is given by,

1

∆

∫ ∞

−∞

|φt(τ)|2[1 − b(∆τ)]dτ (4.27)

where φt(τ) is the Fourier transform of wt(E),

φt(τ) =

∫

wt(E)e−2πiEτdE

=

∫

w(E)e−2πiE(τ+t/(2π)). (4.28)

and b(k) is the form factor discussed in Section 3.3. So if we can determine 〈α(t)〉,

then we will have succeeded to derive an expression for P (t). We can approximate

2See [32] for details.
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such an expression for 〈α(t)〉 by passing from discrete to continuous levels.

〈α(t)〉 =
∑

i

〈
w(Ei) + δwie

−iEit
〉

=
∑

i

〈
w(Ei)e

−iEit
〉

= N

∫

w(Ei)e
−iEitp(Ei)dEi = N

∫

L

w(E)e−iEt dE

L

=
1

∆

∫

w(E)e−iEtdE (4.29)

where ∆ is the mean level spacing, and p(Ei) is the probability density. So then

〈α(t)〉 is given by the same argument for the picket fence energy distribution given

early in the chapter, and so

〈α(t)〉 = e−Γt/2. (4.30)

We can conclude that

〈P (t)〉 =
〈
α(t)α†(t)

〉

= 〈α(t)〉
〈
α†(t)

〉
+

1

∆

∫ ∞

−∞

|φt(τ)|2[1 − b(∆τ)]dτ

= e−Γt +
1

∆

∫ ∞

−∞

|φt(τ)|2[1 − b(∆τ)]dτ. (4.31)

This result is plotted along with a numerical simulation for the GOE case in Figure

4.4. The decay clearly follows an exponential decay followed by a strong revival,

which is unrelated to the trivial Heisenberg time recurrences. This demonstrates

the importance of level statistics in the wave-packet dynamics. Furthermore,

another significant point this analysis raises is the importance of the averaging
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Figure 4.4: Average survival probability from numerical simulations compared
with the theoretical expression. Reproduced from [31]. The time axis
is in units of the Heisenberg time, so it is clear that the revival is not
due to the trivial recurrences.
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methods for computing the average P (t). In general, it is not true that,

〈
|α(t)|2

〉
= | 〈α(t)〉 |2. (4.32)

This is clearly shown in this case, because we explicitly calculate both quantities,

and they are surely different. In fact, their difference is governed by the form

factor.

4.2 Wigner Banded Random Matrix Model (WM)

We will study a system described by a Hamiltonian H = H0 + δxV where H0 is

a diagonal matrix with the picket fence distribution and mean level spacing ∆,

and V is a banded random matrix of with random matrix elements of constant

variance σ within some band 0 < |n − m| ≤ b. Outside the band, the matrix

elements are strictly zero. We will say that σ = 1, and control the strength of

the perturbation exclusively through δx. The model is completely determined by

the parameters (∆, b, δx, ~). The system is prepared in state |λ〉 at time t = 0,

where |λ〉 is an eigenvector of the unperturbed Hamiltonian in the middle of the

spectrum. Without loss of generality, say that |λ〉 has unperturbed energy 0. The

state |λ〉 then evolves in H for t > 0.

We can define several other derived parameters from these basic ones. In par-

ticular we define ωc = ∆b. It follows that the power spectrum of V can be written

C̃(ω) = 2πδx2 within the energy window ωc and zero outside. Furthermore, we

can define τcl = 1/ωc which is the classical correlation time of the power spectrum.
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We present here a review of Kottos and Cohen, et al. [16] that studies the

wave-packet dynamics in energy space of this model. This is the first step to

understanding the more general and demanding problem of quantum dissipations

in chaotic quantum systems. In order to study the wave-packet dynamics in energy

space, we will introduce several measures that quantify the departure from the

initial state. The three measure we will consider are:

1. The square root of the second moment of the energy distribution, defined

to be

δEtails(t) =

√
∑

i

(Ei − Eλ)2Pt(i|λ) (4.33)

This heavily weights the behavior far away from the state |λ〉 (the tails).

2. The δEcore, defined to be the energy range containing 50% of the evolving

probability starting with the prepared site. That is to say, δEcore(t) is defined

to be the satisfy:

1

2
≈

δEcore(t)/∆
∑

k=−δEcore(t)/∆

P (k|λ)(t).

This quantity is very sensitive to the sites immediately surrounding the

prepared state.

3. The survival probability, P (t) defined to be,

P (t) = |〈λ|λ(t)〉|2 (4.34)
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where |λ(t)〉 is the time evolution of the prepared site |λ〉. This we have

shown previously to be the time domain representation of the LDoS.

We begin the review with an analysis of the LDoS. It will be simpler to refer to the

kernel, which we denote P (i|λ) = |〈i|λ〉|2 This analysis of the dynamical scenarios

arising from this model is due to Cohen, et al.[9] and Hiller, et al. [16].

The following conventions will be used throughout this description:

• The standard perturbative regime occurs when (δx/∆) ¿ 1.

• The extended perturbative regime occurs when 1 ¿ (δx/∆) ¿ b1/2

• The ergodic regime occurs when b1/2 ¿ (δx/∆) ¿ b3/2

4.2.1 Parametric Evolution of the LDoS

We will see how the LDoS behaves as we transition from small δx to larger δx.

In the standard perturbative regime, first order perturbation applies, and we get

the usual result that,

PFOPT(n|λ) =
δx2|Vnλ|2

(En − Eλ)2
(4.35)

for n 6= λ, and also PFOPT(λ|λ) ≈ 1.

As δx increases, we enter the extended perturbative regime. In this regime, the

LDoS within the bandwidth (−ωc, ωc) takes on the same shape as in the Friedrich
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model, namely a Lorentzian

Pprt(n|λ) =
δx2|Vnλ|2

(En − Eλ)2 + Γ2
(4.36)

of width Γ = 2π(δx)2/∆. Outside the bandwidth, the LDoS decays faster than

exponential. For stronger perturbations, the coupling is enough to causing strong

mixing outside the bandwidth, which produces different dynamics.

Finally, when δx increases beyond perturbative results, the LDoS is described

by a semicircle.

Psc(n|λ) =
1

2π∆

√

4 −
(

En − Eλ

∆

)2

. (4.37)

These three LDoS shapes are shown in Figure 4.5. The localization regime is also

depicted, although it will not be considered in this text. This regime corresponds

to perturbation strengths that are so large that H0 is considered a perturbation

of V , rather than the other way around.

4.2.2 Wave-packet Dynamics

The wave-packet dynamics of the model under consideration does not have a

straightforward description of the regimes as was found in the LDoS analysis of

the last section. The main issue is whether or not Linear Response Theory (LRT)

is applicable. For our purposes, we will consider a calculation within the domain

of LRT if it depends only on the autocorrelation function C(τ) (this is the same

as depending only on the band-profile of the perturbation operator). Now we will
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Figure 4.5: Simulations showing the shapes of the LDoS kernels in the various
regimes. (a) standard perturbative (b) extended perturbative (c) er-
godic (d) localization (not discussed here). Reproduced from [16].
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consider time dependent driving. That is to say that H = H0 + δx(t)V , where

δx(t) = εf(t) with ε controlling the strength of the driving. The LRT results are

as follows:

The square root of the second moment is given by,

δEtails(t) = ε ×
√

∫ ∞

−∞

C̃(ω)F̃t(ω)
dω

2π
(4.38)

and the survival probability is given by,

P (t) = exp

(

−ε2

∫ ∞

−∞

C̃(ω)
F̃t(ω)

(~ω)2

dω

2π

)

(4.39)

where C̃(ω) is the usual power spectrum, and F̃t(ω) is the spectral content of the

driving x(t), which is defined to be,

F̃t(ω) =

∣
∣
∣
∣

∫ t

0

ḟ(t′)e−iωt′dt′
∣
∣
∣
∣

2

. (4.40)

See Cohen and Kottos [13] for more on LRT. Now we will characterize the regimes

for the wave-packet dynamics.

In the First Order Perturbation Theory Regime, the wave-packet dynamics are

very simple. The prepared state is effectively only coupled to close by states.

Therefore, both measures of the spreading of energy, will be on the order of the

mean level spacing ∆, and the survival probability will be approximately unity.

In the extended perturbative regime, a core-tail structure develops, related to

a separation of energy scales ∆ ¿ δEcore(t) ¿ δEtails(t) ∼ ωc. The core is non-
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perturbative, but δEtails(t) is still determined by the perturbative tails.

In the non-perturbative region there is only one energy scale ωc, and ωc ¿

δEcore(t) ∼ δEtails(t), and perturbation theory cannot be applied. Cohen, Izrailev,

and Kottos [9] have proven that the spreading develops a diffusive component due

to a random walk process of step ~ωc, which take place in the energy space.

After this non-perturbative diffusive scale the packet again saturates occupying

ergodically the energy shell. This ergodic behavior is shown in Figure 4.6 for an

Effective Banded Random Matrix Model (EBRM), which is very similar to the

Wigner BRM setup considered here [9].

4.3 Conclusion

In this section, we explored the emergence of the Fermi Golden Rule exponen-

tial decay. We calculated the LDoS of the flat Friedrichs model using algebraic

means. From there, we investigated the effect of discreteness and level statistics.

What we found was that the the level statistics of the discrete energies of the

unperturbed Hamiltonian determined the shape of the revivals in the survival

probability. Following this presentation, we then went on to review the literature

on a setup closely related to the Friedrichs model, namely the Wigner Banded

Random Matrix (WBRM) model. We distinguished between several regimes of

the LDoS, which emerged by varying the perturbation strength, and we similarly

saw the emergence of various regimes in the framework of the wave-packet dynam-

ics. This review of the standard treatment of the subject of wave-packet dynamics

in energy space of banded random matrices is the foundation for the next chapter,
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Figure 4.6: The quantity δEtails for the EBRM model. The thick dashed line
is the classical quantity, and the others are quantized results with
various perturbation strengths. The gradual approach to saturation
exhibited by the quantized model is indicative of the diffusive behavior.
Reproduced from [16].
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where we will consider a modification to the discussed setup that will result in

fundamentally different dynamics.
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5 Wave-Packet Dynamics of the

Non-Flat Continuum

In the previous chapter, we discussed the wave-packet dynamics in energy space

of complex systems described by a traditional Wigner Banded Matrix Model. The

perturbation operator was characterized by some flat band-profile (with a finite

cutoff in the case of Wigner model). Such RMT models describe chaotic systems

with a classical power spectrum of the form C̃(ω) = 2πε2. However, in realistic

circumstances one usually encounters situations where the perturbation operator

has additional structure, like in the examples discussed in Chapter 2. This chapter

deals with such a situation, i.e., wave-packet dynamics of systems with structured

band-profiles. The results reported here are an extended version of the ones

presented in our recent contribution [17], and to our knowledge constitutes the first

theoretical investigation of the dynamical behavior of a RMT modeling with a non-

trivial band-profile structure. In particular, we consider the dynamics generated

by RMT models with the following power spectrum:

C̃(ω) = ε2|ω|s−1. (5.1)
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Our motivation for such a choice of the power spectrum is inspired by [33],

where they have investigated the perturbation operator of a particle in a chaotic

box under special families of perturbations: deformations and dilations of the box.

The geometry and power spectrum are shown in Figure 5.1, and it is clear that

the power-law behavior could described by Equation (5.1).

The most physically relevant model is the one where the prepared state is like

all other states in the sea of levels (WM). But like before, this problem is not

easily solved. This motivates us to consider simplified systems that will hopefully

capture the relevant features of the WM. Therefore, we analyze first the FM, and

derive a closed form expression for the survival probability. The decay is like

P (t) ∼ (t/t0)
2s−4 for some t0, where t0 defines an important universal time scale

of the problem. The functional form of the decay contrasts sharply with the flat

scenario, which exhibits Fermi Golden Rule exponential decay.

We then will attempt to use the analysis of the FM to make predictions about

the more physically meaningful WM, in which every level is itself coupled to the

continuum by C̃(ω). To our surprise, we witness a first WBRM example for

which the survival probability P (t) behaves in a way that is not similar to the

associated FM. Specifically we find that P (t) is characterized by a generalized

Wigner decay time t0 that depends in a non-linear way on the strength of the

coupling. We also establish that the scaled P (t) has distinct universal and non-

universal features. We conclude that it is only for the flat continuum that we get a

robust exponential decay that is insensitive to the nature of the intra-continuum

couplings. In addition to P (t) we will also investigate other measures of the
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Figure 5.1: (top) The billiards whose geometry will be deformed. (bottom) The
power spectrum of the fluctuations for various types of deformations.
Notice that most of the deformations have a power law as in Equation
(5.1) Reproduced from [33]
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Figure 5.2: Graph theoretic representation of the Friedrichs model. Each σk repre-
sents the variance of the coupling of |λ〉 to a location in the continuum.
σk = ε2(k∆)s−1 where ∆ is the level spacing.

spreading like the second moment of the evolving wave-packet. Our theoretical

results will be always contrasted with detailed numerical calculations.

5.1 Decay of a Bound State to a Non-Flat

Continuum

Let H = H0 + V be a Hamiltonian where H0 is the Hamiltonian of the unper-

turbed system having a picket fence spectrum with mean level spacing ∆, while

V describes the perturbation. Let |λ〉 be an eigenstate of H0 in the middle of

the energy spectrum, and assume that the system is prepared in state |λ〉 at time
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Figure 5.3: Matrix representation of the total Hamiltonian H written in the basis
of H0.

t = 0. This state subsequently decays to a sea of other states due to the coupling

of V . The perturbation matrix V is determined by Equation (2.4) and the spectral

density function:

C̃λ(ω) =







ε2|ω|s−1 |ω| ≤ ωc

0 |ω| > ωc

(5.2)

The subscript λ in the above expression indicates the fact that only the distin-

guished energy level Eλ is coupled to the rest of the levels by the rank two matrix

V . A visualization of the perturbation matrix is shown in Figure 5.3. A graph

theoretic representation of the total Hamiltonian is given in Figure 5.2.

Occasionally it will be useful to think of the “smooth” power spectrum,

C̃(ω) = ε2|ω|s−1e−|ω|/ωc (5.3)
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for all ω. This smooth expression introduces the cutoff, ωc, through an exponential

in order to simplify the calculus involved in certain Fourier transforms. This is not

such a dramatic change to the problem, and we will provide numerical evidence

to suggest that this change does not alter the results significantly.

Notice that when s = 1, the problem reduces to the flat case considered in

Chapter 4. Furthermore, for s > 2, the model can be treated by using first order

perturbation theory. The theory we will develop in this chapter only applies for

1 ≤ s ≤ 2. The situation where s < 1 would require a more complex treatment

because of the increased importance of level statistics. The model is completely

determined by the parameters (s, ε, ∆, ωc).

It is evident from the dimensional analysis that there are three relevant time

scales: The Heisenberg time tH , which is related to the mean level spacing ∆, the

semi-classical (correlation) time, which is related to the bandwidth ωc, and the

generalized Wigner decay time t0, which is related to the strength of the driving.

Summarizing these time scales we have:

• tH = 1/∆

• τcl = 2π/ωc

• t0 =
(

| sin sπ/2|
πε2

) 1
2−s

The significance of t0 will be justified in the next section. It is related to a

characteristic energy that defines a crossover from one behavior to another in the

LDoS. The Heisenberg time determines the onset to quantum recurrences. In the

continuum limit, this time tends towards infinity. Similarly, as the limit of the
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bandwidth tends towards infinity, τcl tends towards zero. Thus in these limits,

the only time scale that remains is t0.

We will now determine the boundaries for ε given a fixed (s, ∆, ωc). This will be

especially important for the numerical simulations. The theory must take place in

a time window before the Heisenberg time, in order to avoid recurrences, and after

τcl in order to be non-perturbative. Thus, we have the restriction τcl ¿ t0 ¿ tH.

In other words,

1

ωc

¿ t0 ¿
1

∆
. (5.4)

Direct substitution yields the bounds on ε, which are:

(∆| sin sπ/2|)
2−s
2 ¿ ε ¿

(

∆
N

2
| sin sπ/2|

) 2−s
2

. (5.5)

All numerics discussed regarding this model occur in the regime defined by Equa-

tion (5.5).

5.1.1 The Local Density of States

Following the same strategy as in Chapter 4, we calculate the LDoS associated

with the non-flat FM. Its Fourier transform will give us the survival probability

amplitude. Our approach to the LDoS will differ from the one of the previous chap-

ter, where attention was paid also to the spectral properties of the unperturbed

Hamiltonian. Specifically, in this derivation we will use the so-called Feshbach

projection method. The main idea is to decompose the Hilbert space into two
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subspaces P and Q. The subspace P only contains the prepared state |λ〉, while

Q is associated with the continuum. The Hamiltonian H projected into the P

subspace will be the effective Hamiltonian for the state |λ〉, since it will generate

the dynamics of |λ〉 . Then one can calculate 〈λ|G+ |λ〉, where G+ is the retarded

Green’s function for the effective Hamiltonian. This overlap element is directly

related to the LDoS (see Appendix B.1). Referring to the Appendix B.2 for a

detailed derivation, we get that the LDoS for the non-flat FM is

ρ(ω) =
1

π

Γ(ω)/2

(ω − ∆(ω))2 + Γ(ω)/2)2
, (5.6)

which resembles a Lorentzian. The functions Γ(ω), ∆(ω) are defined to be,

∆(ω) =
∑

n6=0

|Vn,0|2
E0 − En

=

∫ ∞

−∞

C̃(ω′)

ω − ω′
dω′

Γ(ω) = 2π
∑

n

|V0,n|2δ(ω − En) ≡ 2πC̃(ω) (5.7)

and in Appendix B.3 we show that these evaluate to,

∆(ω) = ε2πω|ω|s−2 cot
sπ

2

Γ(ω) = 2πε2|ω|s−1. (5.8)

Simple algebraic substitution reveals that the LDoS of this problem is:

ρ(ω) =
ε2

|ω|3−s − (2πε2 cot sπ
2

)|ω| + (π2ε4/ sin2 sπ
2

)|ω|s−1
(5.9)
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Figure 5.4: LDoS of the Friedrichs model. In this case s = 1.5 and ε = 1.44. The
theoretical line is Equation (5.9). The numerics were performed by
diagonalization of 100 realizations of the Hamiltonian.

In order to gain some confidence in our analytical calculations, we have also evalu-

ated the LDoS for the FM numerically. The results of our numerical investigations

are reported along with this theoretical LDoS in Figure 5.4. We observe an excel-

lent agreement between the analytics and the numerics.

The next step is to identify the regions defined by the dominant terms of the

denominator. We argue that the linear term is never dominant. Indeed, if we

write the denominator as,

|ω|3−s − (2πε2 cot
sπ

2
)|ω| + (π2ε4/ sin2 sπ

2
)|ω|s−1 =

2πε2 cot
sπ

2
|ω|

[ |ω|2−s

2πε2 cot sπ/2
+

π2ε4|ω|s−2

2πε2 cot sπ
2

sin2 sπ
2

− 1

]

. (5.10)

the linear term is dominant when the quantity in brackets is approximately −1,
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∣
∣

tan sπ
2

2πε2

∣
∣
∣
∣
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∣
∣
∣
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∣
∣
∣
∣

(5.11)

This inequality is satisfied in the shaded region in Figure 5.5. Observe in this figure

that for any s, the inequality is satisfied for less than an order of magnitude, so in

order to see an ω window where the linear term dominates, it is necessary to make

ε2 small, but when this happens, we are back to simple perturbative calculations.

Thus we can conclude that the linear term of the denominator never dominates.
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It remains to compare (π2ε4/ sin2 sπ
2

)|ω|s−1 with |ω|3−s. We write,

|ω|3−s + (π2ε4/ sin2 sπ

2
)|ω|s−1 = |ω|s−1 π2ε4

sin2 sπ
2








|ω|2−s

(
πε2

sin sπ
2

)





2

+ 1



 . (5.12)

Which apparently means that when |ω|2−s ¿ πε2

| sin sπ
2
|
, the |ω|s−1 term dominates.

Similarly, we can write,

|ω|3−s + (π2ε4/ sin2 sπ

2
)|ω|s−1 = |ω|3−s




1 +





(
πε2

sin sπ/2

)

|ω|2−s





2



 (5.13)

This allows us to conclude that when |ω|2−s À πε2

| sin sπ
2
|
, the |ω|3−s term dominates.

Summarizing the above approximations for the LDoS, we have:

ρ(ω) =







sin2 sπ/2
π2ε2

1
|ω|s−1 |ω|2−s ¿ πε2

| sin sπ/2|

ε2

|ω|3−s |ω|2−s À πε2

| sin sπ/2|

(5.14)

Furthermore, the energy level,

ω0 =

(
πε2

| sin sπ/2|

) 1
2−s

(5.15)

and the corresponding time,

t0 =

( | sin sπ/2|
πε2

) 1
2−s

(5.16)

emerge as fundamental quantities of the LDoS analysis.
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5.1.2 Survival Probability

The LDoS of the FM is neatly split into a low energy and high energy region with

crossover at 1/t0. Therefore, we can reasonably expect that the Fourier transform

of each region in energy space as if it were extended over all energies will agree with

the survival probability amplitude in the corresponding region. The low energy

region of the LDoS determines the long time behavior of the survival probability

amplitude, and the high energy region of the LDoS determines the short time

behavior.

Taking the limit ωc → ∞, we evaluate the Fourier transforms of the limiting

expressions for the LDoS as in Equation (5.14). We find that the survival proba-

bility amplitude is 1− (t/t0)
2−s for short times and 1/(t/t0)

2−s for long times with

crossover at t0. Therefore the survival probability is given by,

P (t) =







1 − (t/t0)
4−2s t ¿ t0

(t/t0)
2s−4 t À t0

(5.17)

Unfortunately, in our numerical investigation of the survival probability, it has

not been possible to observe the t ¿ t0 power law due to the initial Gaussian

decay dominating the short time behavior. The t À t0 power-law, however, is

robust, and is confirmed in Figure 5.6. This data was generated by the numerical

integration of the Shrödinger equation using the same algorithm as in the flat

continuum simulations.
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Figure 5.6: Survival probability, with t0 time scaling

5.1.3 Other Measure of Energy Spreading

We return to the two measures of energy spreading discussed in Chapter 4:

δEcore(t) and δEtails(t). As indicated by their subscripts, each quantity weights

more heavily either the spreading in the core or the spreading at the tails more

heavily than the other. Furthermore, in this section we will see that these mea-

sures have different time and energy scales, indicating that the physics of the core

is different from the physics of the tails.

In Appendix C, we deduce the time and energy scales of systems described

systems characterized by the power spectrum as in Equation (2.4). The conclusion

of the argument is that the time scaling is t 7→ √
s

s+2
ωct, and the energy scaling

is by δEtails(t) is δEtails(t) 7→
√

s
ε2ωs

c
δEtails(t). In Figure 5.7, we present the scaled

δEtails(t) for various parameters, and we observe that, indeed, the scaling law is
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Figure 5.7: δEtails(t) with δEtails(t) 7→
√

s
ε2ωs

c
δEtails(t), t 7→ √

s
s+2

ωct scaling.

correct.

The quantity δEcore(t) is closely related to the survival probability, so the time

scaling of δEcore(t) should go like t0. Furthermore, the quantity the energy scale

should also be related to t0, namely its associated energy 1/t0. Thus, we reason

that the appropriate scaling law for δEcore(t) is δEcore(t) 7→ δEcore(t) ∗ t0 and

t 7→ t/t0. We plot δEcore(t) for various parameter in Figure 5.8 with the scaling

described above. This scaling is not especially good. In order to understand what

is happening, we characterize each curve by a single value, called the departure
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Figure 5.9: Extracted departure times vs. perturbation strength, ε. The dashed
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point. The departure point is the first time that δEcore(t) changes from unity. The

departure points should vary like t0. The departure points and the t0 prediction

are plotted in Figure 5.9. In this presentation, it becomes clear that the t0 scaling

is appropriate for small ε, but breaks down as ε increases. We will defer the

discussion of this topic to its treatment in the Wigner Model, where we will be

able to give a more satisfying explanation for these deviations.
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5.2 The Wigner Model

In the last part of this Chapter we discuss the wave-packet dynamics in energy

space for the Wigner Model (WM). In contrast to the FM discussed in the previous

section, the perturbation V in the the WM is a banded matrix of width ωc = ∆b

and it does not distinguishes between the levels. V is a random matrix whose

band-profile is characterized by the power spectrum:

C̃(ω) =







ε2|ω|s−1 |ω| ≤ ωc

0 |ω| > ωc

(5.18)

5.2.1 The Local Density of States

In Chapter 4, we saw that the Friedrichs model and the Wigner model had the

same LDoS within the energy range (−ωc, ωc). As a result, the survival probability

in both cases decayed exponentially with the same scaling law. The justification

for the similarity of the LDoS was minimal. We might expect that the same corre-

spondence applies here as well, but the agreement between the models is limited.

This indicates to us that the nature of intra-continuum couplings significantly de-

termines the relaxation process. There is a fundamental difference between the

LDoS in the Friedrich model for s = 1 and s > 1. Indeed, as we have shown

previously, the LDoS for the Friedrichs model diverges at the origin for s > 1 ,

while for s = 1, it does not. This is important, because the LDoS of the WM for

s > 1 does not diverge at the origin.

The analysis of the LDoS in the WM case can be carried out approximately
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Figure 5.10: LDoS of the Wigner and Friedrichs models plotted log-log and log-
linear. For all curves, s = 1.5 and ε = 1.44. The theoretical line
for the FM is Equation (5.9). (top) The LDoS of the FM and WM
show agreement for the tails until the cutoff ωc. (bottom) The core
is fundamentally different for WM and FM. The theoretical lines for
the WM are regressions of a semicircular function. Notice that the
LDoS of the Friedrichs model diverges around ω = 0, but this is not
the case in the Wigner model.

78



using a blend of heuristic and formal methods. As already observed in previous

works [9] (and see Figure 5.10) the LDoS has first order tails |Vn,λ/(En − Eλ)|2

that coexist with the core (non-perturbative) component. We can determine the

border γ0 between the core and the tail simply from normalization:

p0 =

∫ ∞

γ0

C̃(ω)

ω2
dω ∼ 1 (5.19)

Some very preliminary results (see also next section) indicate that the resulting

γ0 is directly related to the t0 of the FM. For s > 2 we would have for sufficiently

small coupling p0 ¿ 1 even if we took the limit γ0 → 0. This means that first

order perturbation theory is valid as a global approximation. But for s < 2, the

above equation implies breakdown of first order perturbation theory at γ0. In the

tails H0 dominates over V , while in the core V dominates. Therefore, as far as

the core in concerned, it makes sense to diagonalize V with an effective cutoff γ0.

Following the arguments of Feingold [34] concerning the diagonalization of random

banded matrices, the result for the LDoS core shape should be semicircle-like, i.e.,

ρ(ω) ≈ 1 − (ω/R)2 for ω/R << 1 (5.20)

with width R given by the expression by

∆Esc =

[∫ γ0

0

C̃(ω)dω

]1/2

∼ γ0 (5.21)

We emphasize that in order to obtain the last equality we have to use the effective
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Figure 5.11: Survival probability for the non-flat Wigner Model. For all curves,
s = 1.5. The scaling relation is from the FM, and the theoretical line
is also from the FM.

bandwidth γ0 instead of the actual bandwidth ωc. The outcome demonstrates

that our procedure is self-consistent: the core has the same width as implied

by the breakdown of first-order perturbation theory. We note that within this

perspective, the s = 1 Lorentzian is regarded as composed of a semicircle-like core

and first order tails. The applicability of our analytical argumentation was tested

via direct numerical evaluation of the LDoS for the Wigner model. In Figure

5.10, we report the outcome of our numerical results together with the theoretical

expectations. One can clearly see two distinct regimes: the core, which can be

described by a semicircle, and the tails, which are described by a similar expression

as the one for the FM.
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5.2.2 Survival Probability

Next we look at the survival probability of the Wigner model. We will assume that

the energy scale that determines the change in the functional form of the LDoS is

the relevant one that dictates the temporal behavior of the survival probability.

Following this ansatz, we report in Figure 5.11 the survival probabilities of the

WM with s = 1.5 for various bandwidths b and perturbation strengths ε. A

moderately good scaling behavior is observed. Nevertheless, more work is needed

in order to establish for certain that the relevant scaling time for the Wigner

model is the same as the scaling time of the FM. Another fundamental point of

our calculation is the drastic deviation of the decay law for the WM compared

with the decay law for the relaxation process of the FM (see bold dashed line in

Figure 5.11).

Naively we assume that the time scale behaves like in the FM. Figure 5.11 shows

that there is limited agreement with the scaling, but an entirely different functional

shape. This is to be expected, because the LDoS and survival probability are

different representations of each other. Apparently in the WM case, there is some

other characteristic time and energy that governs the dynamics. The t0 scaling is

not entirely wrong, but it is apparent that a more refined study of the LDoS is

required.

5.2.3 Other Measures of Energy Spreading

In addition to the survival probability, we consider two other measures to charac-

terize the spreading of energy from the prepared state to the continuum.

81



0.1 1 10 100
scaled time

0.125

0.25

0.5

1

2

44
sc

al
ed

 δ
E

ta
ils

1 100

1

Figure 5.12: δEtails(t) for the WM. The dashed red line comes from numerical inte-
gration of the power spectrum. The other curves are representatives
for the parameters s = 1, 1.25 and 1.5, b = 400 and 800, with various
values of ε within the bounds discussed in Section (5.5).

The arguments regarding the scaling relations for the δEtails(t) is derived in

Appendix C. This is the same argument that applied to the FM, which is appro-

priate because the power spectrums are the same in both cases, and the argument

about δEtails depends only on the power spectrum. The numerical results with

the appropriate scaling are shown in Figure 5.12. One difference to note is that

the steady state for the WM is a factor of
√

2 times higher than the FM case.

The δEcore

In the case of s = 1, we found that the standard deviation of the evolving energy

distribution δEtails(t) and the core of the distribution δEcore(t) scale in a different

manner. We concluded that this reflects the different type of physics governing

the core and the tail of the distribution. The former is dictated by γ0 while the
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latter is related to by ωc. We carry out the same type of investigation for the

s > 1 case.

In Figure 5.13 we report some representative cases of the δEcore versus time. We

see that originally δEcore = 1 (as always, we assume that the mean level spacing is

∆ = 1). As long as δEcore ≈ ∆, most of the probability is concentrated in only one

level (the initial state) and thus standard first order time-dependent perturbation

theory is applicable to describe the evolving energy distribution. At a later time

t∗, we observe a sudden departure towards a saturation value. The transition is

quite sharp and one can extract easily the t∗ from the numerical simulations. Its

existence signifies the creation of a “core” area of the evolving profile. The sharp

nature of the transition indicates that the core is formed very rapidly. This is

the energy regime where the shape of the evolving energy distribution is highly

non-perturbative. In Figure 5.14 we plot the extracted time t∗ versus the inverse

of the saturation plateau reached by δEcore. We see that both of them are related

in a linear way, thus indicating that the width of the core is inversely proportional

to the departure time t∗. On the other hand, from the LDoS analysis we have that

the LDoS core is related to the energy scale γ0 ∼ 1/t0, where t0 is the time scale

for the Friedrichs model. It is therefore natural to investigate the possibility that

1/t∗ ∼ δEsatur
core ∼ γ0 ∼ 1/t0. Indeed, in Figure 5.15 we report our numerical data

for various values of s showing the departure time t∗ vs. the perturbation strength

ε. The bold dashed lines indicate the theoretical expectation for the case where

t∗ scales accordingly to the ansatz above (i.e. accordingly to t0). A moderate

agreement is evident. The deviations are attributed to a finite bandwidth effect.
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Figure 5.13: Unscaled δEcore vs. time for the WM. δEcore is strictly 1 up to some
time t∗, after which it increases sharply until saturation.For all curves
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The justification for this claim is that in Figure 5.15, it is apparent that increasing

the bandwidth b decreases the deviation from the predicted line.

5.3 Conclusion

In this chapter we analyzed two models with non-flat power spectrum: The

Friedrichs model and the Wigner model. We found that first order tails of the

LDoS are fully determined by the spectral density function C̃(ω), which also al-
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lowed us to deduce the generalized Wigner time t0. The non-perturbative core

within ω < γ0, however, has a non-universal structure that depends on the details

of the model and in physical circumstances reflects the semi-classical dynamics in

the phase space [11, 35, 16]. Indeed, we find that the LDoS of the WM and its FM

counterpart have the same first order tails, while the core (for s > 1) is different.

Consequently P (t) exhibits an exponential-like decay in the WM case, but power-

law decay in the FM case. It is only for the standard case of flat band-profile

(s = 1) that both expressions coincide.
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6 Concluding Remarks

Random Matrix Theory (RMT) was originally conceived half a century ago by

Wigner in order to describe the statistical properties of the spectrum and eigen-

functions of complex nuclei. RMT was studied extensively due to its rich mathe-

matical content by early pioneers such as Mehta and Porter. The physics commu-

nity has also extensively drawn from RMT modeling especially in the last couple of

decades due to mesoscopic systems and quantum chaos studies, i.e., the studies of

quantum systems with chaotic classical dynamics. In fact, the overwhelming nu-

merical evidence on the applicability of RMT predictions in the study of statistical

properties of eigenfunctions and eigenvalues of complex chaotic systems led many

people to define quantum chaos as being synonymous with systems admitting a

RMT model. This is probably going too far. This dogmatic belief in RMT has

been challenged and extensively investigated in recent years, by various authors

leading to more careful statements on the applicability of RMT. However, these

previous studies were focused on spectral and eigenfunction analysis. Following

the path of Cohen and Kottos, we brought RMT modeling into the frame of quan-

tum dynamics. Motivated by previous studies that recognized the importance of
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structures in the energy landscape of quantum operators, we introduced a new

ensemble of random matrices that extends the traditional Wigner theory and we

investigated the resulting wave-packet dynamics scenario. Of special interest to

our analysis was the investigation of the time relaxation properties of a prepared

state into a sea of other states (the continuum). We found that, for a large family

of RMT models with a non-flat profile, the survival probability P (t) might ex-

hibit either exponential-like or power-law decay, depending on the non-universal

features of the model. This is a novel result as it takes us beyond the traditional

Wigner (Fermi Golden Rule) exponential decay. We believe that our study will

shed light on the design of mesoscopic dots with a controlled relaxation process,

while additionally it opens the way to model the so-called “doorway states” in the

energy redistribution found in atomic physics and quantum chemistry.

There is still a long way to go until we will understand completely the impor-

tance of structures in the quantum evolution of complex quantum systems. The

ultimate goal is to be able to build a theory of quantum dissipation that incorpo-

rates the non-universal features (semi-classical structures) that goes beyond the

standard perturbative limit. Our study constitutes a first but significant step

in this direction, as it addresses wave-packet dynamics in the presence of such

structures.
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A Mathematical Details

A.1 Justification of Equation (4.9) in Section 4.1.2

on p. 41

The statement we will establish is that:

|i〉 =

|λ〉 +
∑

µ

cµ |µ〉
√

1 +
∑

µ

|cµ|2
(4.9)

A priori, we can write |i〉 as a linear combination of the eigenstates of H0, since

the set of eigenstates spans all of Hilbert space. So

|i〉 =
cλ |λ〉 +

∑

µ cµ |µ〉
√

|cλ|2 +
∑

µ |cµ|2
. (A.1)

If cλ 6= 0, then it would be possible to divide the numerator and the denominator

by cλ and redefine all the cµ’s to include the cλ. This would simplify the above

expression:
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It remains to be shown that cλ 6= 0. First order time independent perturbation

theory shows that the first order correction to any eigenstate |i〉 is given by

∑

k,j

Vkj

E
(0)
k − E

(0)
j

|j〉 (A.2)

So when |j〉 = |λ〉, Vλk is always nonzero. Thus there is always a nonzero contri-

bution of |λ〉 to an eigenvector of H. Therefore cλ 6= 0, and we are free to divide

by cλ. By a harmless relabeling, we arrive at Equation (4.9).

A.2 Justification of Equation (4.14) in Section 4.1.2

on p. 44

Here we will prove Equation (4.14):

|〈λ|i〉|2 =
ε2

(Γ/2)2 + (E
(0)
λ − Ei)2

. (4.14)

where

Γ =
2πε2

∆

√

1 +

(
∆

πε

)2

.

We begin with the LDoS kernel,

|〈λ|i〉|2 =



1 +
∑

µ

[

|Vλµ|
Ei − E

(0)
µ

]2




−1

(A.3)
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We will now simplify the sum in the denominator.

S =
∑

µ

[

|Vλµ|
Ei − E

(0)
µ

]2

= ε2

∞∑

k=−∞

(Ei − E
(0)
λ − ∆k)−2

=
ε2

∆2

∞∑

k=−∞

(

Ei − E
(0)
λ

∆
− k

)−2

(A.4)

It is a mathematical identities that:

∞∑

k=−∞

(z − k)−2 =
π2

sin2(πz)
. (A.5)

So then,

S =
ε2

∆2







π2

sin2

(

π
Ei−E

(0)
λ

∆

)







=
ε2π2

∆2
sin−2

[ π

∆
(Ei − E

(0)
λ )

]

. (A.6)

Using the Pythagorean identities that 1 + cot2 θ = 1/ sin2 θ, it is possible to write

S as,

S =
ε2π2

∆2

(

1 + cot2
[ π

∆
(Ei − Eλ)

])

. (A.7)

We will now derive another expression using Equation (A.5) by integrating both

sides of it with respect to z.

∫ ∞∑

k=−∞

(z − k)−2 dz =

∫
π2

sin2(πz)
dz

∴ ©©©(−1)
∞∑

k=−∞

(z − k)−1 = ¡¡−π

tan z
= π cot z (A.8)
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Combining Equations (4.11b) and (4.11a) yields an expression for the following

energy difference:

E
(0)
λ − Ei =

∑

µ

|Vλµ|2

E
(0)
µ − Ei

. (A.9)

Call this sum σ. So then,

σ = ε2

∞∑

k=−∞

(E
(0)
λ + k∆ − Ei)

−1 =
ε2

∆

∞∑

k=−∞

(

E
(0)
λ − Ei

∆
+ k

)−1

. (A.10)

Use the identity to write that:

σ =
ε2π

∆
tan−1

[ π

∆
(E

(0)
λ − Ei)

]

= E
(0)
λ − Ei. (A.11)

Now it is possible to simplify S, because we have just shown that

cot2
[ π

∆
(E

(0)
λ − Ei)

]

=

(
∆

ε2π

)2

(E
(0)
λ − Ei)

2. (A.12)

So then,

S =
ε2π2

∆2

(

1 + cot2
[ π

∆
(Ei − E

(0)
λ

])

=
ε2π2

∆2

(

1 +

(
∆

ε2π

)2

(E
(0)
λ − Ei)

2

)

=
ε2π2

∆2
+

1

ε2
(E

(0)
λ − Ei)

2 (A.13)
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|〈λ|i〉|2 =
1

1 + S
=

1

1 + ε2π2

∆2 + 1
ε2

(E
(0)
λ − Ei)2

=
ε2

ε2 + ε4π2

∆2 + (E
(0)
λ − Ei)2

(A.14)

Define the quantity Γ in the following way:

ε2 +
ε4π2

∆2
=

ε4π2

∆2

(
∆2

π2ε2
+ 1

)

=

(
Γ

2

)2

∴ Γ =
2πε2

∆

√

1 +

(
∆

πε

)2

.
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B LDoS, Green’s Functions, and

Spectral Functions

B.1 The LDoS and its Relationship with the

Green’s Function

It is an identity that:

G±(ω) =
1

ω ± 0i −H =
1

ω −H ∓ iπδ(ω −H) (B.1)

where “0” denotes an infinitesimal. This can be shown using contour integration

in the complex plane. From the above statement, observe that,

Im
[
G+

]
=

i

2
[G+ − G−] = −πδ(E −H). (B.2)
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Now it will be shown that sandwiching − 1
π
Im [G+] with |Ψ〉 yields the local density

of states (LDoS), ρ(ω).

〈Ψ| −1

π
Im

[
G+

]
|Ψ〉 = 〈Ψ| δ(E −H) |Ψ〉

= 〈Ψ| δ(E −H)

(
∑

n

|n〉 〈n|
)

|Ψ〉

=
∑

n

|〈Ψ|n〉|2δ(E − En) (B.3)

which is exactly the definition of the LDoS. So,

ρ(E) = − 1

π
〈Ψ| Im

[
G+

]
|Ψ〉 . (B.4)

B.2 Feshbach’s Projection Method and Retarded

Green’s Functions

The derivation here is based on the setup discussed in Section 5.1 This method

of partition the Hamiltonian is due to Feshbach [36]. Without loss of generality,

write the Hamiltonian H in the basis of H0 in the following form:
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H =






















Eλ σ1 σ2 σ3 · · · σk · · ·

σ1 E1 0 0 · · · 0 · · ·

σ2 0 E2 0 · · · 0 · · ·

σ3 0 0 E3
...

...
...

...
. . . 0

σk 0 0 · · · 0 Ek

...
...

...
. . .






















Note that the bound state |λ〉 corresponds to the energy Eλ in the first row

and column, but this is only for aesthetic considerations. The argument described

below does not assume this is the lowest energy level.

Since we only care about the state |λ〉, we decompose the system into two

subspaces. One that is simply the state |λ〉, and the other subspace is all of

Hilbert space excluding the space containing |λ〉.

H =






HP
0 0

0 HQ
0




 +






0 V PQ

V QP 0




 (B.5)

So apparently HP
0 is a 1×1 matrix, HQ

0 is an ∞×∞ matrix, V PQ is a 1×∞ vector,

and V QP is an ∞× 1 vector. Consider an eigenstate of H called Ψ = (ψ χ)T.

Then,






HP
0 V PQ

V QP HQ
0











ψ

χ




 = E






ψ

χ




 (B.6)
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From the second row of the above equation, we can see that χ = GQ
0 V QP ψ where

GQ
0 = (E1−HQ

0 )−1. Taking the first row of the equation, and substituting for χ,

we find that,

[HP
0 + V PQGQ

0 V QP ]ψ = Eψ. (B.7)

The next step is to lift E to the complex plane and rewrite GQ
0 as,

GQ
0 =

1

(E + 0i)1−HQ
0

=
1

E1−HQ
0

− iπδ(E1). (B.8)

Where we have used the Cauchy Principle Value. We then can proceed to rewrite

part of the left hand side of Equation (B.7),

V PQGQ
0 V QP = V PQ

(
1

E1−HQ
0

− iπδ(E1)

)

V QP

= V PQ 1

E1−HQ
0

V QP − iπV PQδ(E1)V QP

=
∑

n

|Vλ,n|2
E − En

− iπ
∑

m

|Vλ,m|2δ(E − Em). (B.9)

Substituting the above into Equation (B.7) provides us with the effective Hamil-

tonian for the state |λ〉, HP ,

HP = HP
0 + V PQGQ

0 V QP = HP
0 + ∆(E) − iΓ(E)/2 (B.10)
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where

∆(E) =
∑

n

|Vλ,n|2
E − En

Γ(E) = 2π
∑

m

|Vλ,m|2δ(E − Em) (B.11)

Note that HP is non-Hermitian because probability can leak into the space Q. For

the LDoS analysis, we are interested in the quantity 〈λ|G+ |λ〉 where G+ is the

retarded Green’s function of the full Hamiltonian H. But the dynamics of |λ〉 is

determined by HP , so we argue that 〈λ|G+ |λ〉 is the same as 〈λ|GP |λ〉 where GP

is the retarded Green’s function for the effective Hamiltonian, HP . Furthermore,

GP is a 1×1 matrix because HP is a 1×1 matrix, so we have that 〈λ|GP |λ〉 = GP .

And thus,

〈λ|G+ |λ〉 = 〈λ|GP |λ〉 = GP (ω)

=
1

ω −HP
=

1

ω − Eλ − ∆(ω) + iΓ(ω)/2
(B.12)

Replacing ω − Eλ 7→ ω yields the general expression

〈λ|G+ |λ〉 =
1

(ω − ∆(ω)) + iΓ(ω)/2
(B.13)

The argument in Appendix B.1 shows that the imaginary part of this is the

LDoS. To find the imaginary part, we will clear the denominator of its imaginary

part. The functions Γ(ω) and ∆(ω) are real valued, so it is simple to multiply the
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numerator and denominator by the complex conjugate of the denominator.

〈λ|G+ |λ〉 =
1

(ω − ∆(ω)) + i(Γ(ω)/2)

(ω − ∆(ω)) − i(Γ(ω)/2)

(ω − ∆(ω)) − i(Γ(ω)/2)

=
ω − ∆(ω)

(ω − ∆(ω))2 + (Γ(ω)/2)2
+ i

−Γ(ω)/2

(ω − ∆(ω))2 + (Γ(ω)/2)2

So by inspection,

−〈λ| Im
[
G+

]
|λ〉 =

−Γ(ω)/2

(ω − ∆(ω))2 + (Γ(ω)/2)2
. (B.14)

Therefore, we have shown that:

ρ(ω) =
1

π

Γ(ω)/2

(ω − ∆(ω))2 + (Γ(ω)/2)2
. (B.15)

B.3 Evaluation of Spectral Functions

The Green’s function analysis reveals two spectral functions, Γ(ω) and ∆(ω). In

order to have a complete expression for the LDoS, it is necessary to evaluate these

functions.

∆(ω) =
∑

n6=λ

|Vn,λ|2
Eλ − En

=

∫ ∞

−∞

C̃(ω′)

ω − ω′
dω′. (B.16)

Thus,

∆(ω) =

∫ ∞

−∞

ε2|ω′|s−1

ω − ω′
dω′ (B.17)

101



This can be evaluated in a Computer Algebra System (such as Mathematica), and

it simplifies to:

∆(ω) = ε2πω|ω|s−2 cot
sπ

2
(B.18)

The Γ(ω) term easily evaluated, it is simply:

Γ(ω) = 2π
∑

n

|Vλ,n|2δ(ω − En) ≡ 2πC̃(ω) = 2πε2|ω|s−1. (B.19)
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C Scaling Relations for δEtails(t)

We will now describe the δEtails scaling for systems with power spectrum C̃(ω) =

ε2|ω|s−1 and cutoff ωc. Thus, the flat band-profile situation is the special case

s = 1. It is a result in Linear Response Theory (see [16]) that,

δEtails(t) =
√

2[C(0) − C(t)]. (C.1)

where C(t) is the autocorrelation function. As t approaches infinity, C(t) tends

towards zero. So the asymptotic value of δEtails(t) is
√

2C(0). It is possible to

compute C(0) because its Fourier transform, C̃(ω), is known.

C(0) =
1

2π

∫ ∞

−∞

C̃(ω)e−(0)ωdω =
1

π
ε2

∫ ωc

0

ωs−1dω =
ε2ωs

c

sπ
(C.2)

So apparently the scaling of δEtails is δEtails 7→
√

s
ε2ωs

c
δEtails. In order to under-

stand the time scale of δEtails(t), expand C(t) about zero.

C(t) =
∞∑

n=0

C(n)(0)

n!
tn (C.3)
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It is necessary to compute the nth derivatives of C(t) evaluated at zero. Fortu-

nately, this can be done.

dnC(t)

dtn

∣
∣
∣
t=0

=
1

2π

∫ ∞

−∞

C̃(ω)
dneiωt

dtn
dω

∣
∣
∣
t=0

=
1

2π

∫ ∞

−∞

ε2|ω|s−1(iω)neiωtdω
∣
∣
∣
t=0

=
inε2

2π

∫ ωc

−ωc

|ω|s−1ωndω (C.4)

When n is odd, the integrand is odd, and because the interval is symmetric, the

integral evaluates to zero. For n even,

dnC(t)

dtn

∣
∣
∣
t=0

=
inε2

π
inε2

∫ ωc

0

ωs+n−1dω

=
inε2

π

ωs+n
c

s + n
(C.5)

So then the expansion of C(t) to second order is,

C(t) = C(0) − ωs+2
c ε2

2π(s + 2)
t2 + · · · (C.6)

So we have that,

δEtails(t) ≈
√

ωs+2
c ε2

(s + 2)π
t2

√
s

ε2ωs
c

δEtails(t) ≈
√

s

ε2ωs
c

√

2ωs+2
c ε2

(s + 2)π
t2

√
s

ε2ωs
c

δEtails(t) ≈ 1√
π

√
s

(s + 2)
ωct (C.7)
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So then apparently the time scaling is t 7→ √
s

s+2
ωct.
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