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Abstract

In the studies of conductance of closed mesoscopic systems, semi-linear response the-

ory (SLRT) offers a novel unified framework that goes beyond the traditional Kubo

formulation. In this Thesis we apply SLRT to two types of mesoscopic systems. The

first is disordered quasi-1d rings, where we build an analytical model to understand the

departure of SLRT results from Kubo results. Guided by the numerical analysis on the

statistical properties of the current operator matrix elements, we introduce a random

matrix theory (RMT) model which leads to a generalized variable range hopping (VRH)

picture of the conductance. Both of these models capture the essential aspects of the

mesoscopic conductance for this system. The second system is the Harper model, which

is a one-dimensional model that exhibits a Metal-Insulator transition—at the critical

point, it possesses fractal structures in both the eigenfunctions and the eigenvalues.

We are interested in studying how the fractal structures might have an effect on the

mesoscopic conductance calculations.



Acknowledgments

Writing this Thesis has been challenging and difficult, but overall it is a very inspiring

and satisfying experience. Here, I would thank the people that give contribution in

some way or another to the completion of this Thesis.

First and foremost, I am very grateful to have Tsampikos Kottos as my advisor, as he

offered almost constant help, advice, and support for this past year and a half. I would

like to acknowledge Doron Cohen, Alexander Stotland, Jiayi Zhang, and Tal Peer for

the insightful collaborations. I would also like to thank Gim Seng Ng, Joshua Bodyfelt,

Moritz Hiller, and the rest of the Wesleyan CQDMP Group members for the helpful

discussions. I would like to thank Joshua again for helping with the correction of this

Thesis.

Wesleyan University is gratefully acknowledged for the financial support. Financial sup-

port from the USA-Israel Binational Science Foundation (BSF) and the DFG Forscher-

gruppe 760 are also acknowledged.

I would also like to thank all the professors at Wesleyan University for their help and

guidance during my almost four years of study here and the people in the MPI for

Dynamics and Self-Organization Göttingen for their hospitality during my visit there

last summer. I would also like to thank Mr. and Mrs. Freeman, without them I will

not be able to come here to Wesleyan.

I would like to thank my parents for their constant support for more than twenty

years, and my sister, Saras, for always being there to chat with. Finally, I thank my

housemates, fellow ST Lab thesis campers, and fellow Indonesian students at Wesleyan

for keeping me cheered up during the challenging times of writing this Thesis.



Contents

1 Overview 1

2 Disordered Systems 4

2.1 Tight-Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Periodic Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Localization Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Thouless Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Weak Disorder Approximations of Localization Length . . . . . . 15

2.4 Ring Geometries: Thin Rings and Quasi-1d Rings . . . . . . . . . . . . 18

3 Conductance of Mesoscopic Systems 21

3.1 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Kubo-Greenwood Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Diffusion-Dissipation Relation . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Thouless Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Landauer Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Mesoscopic Conductance of Disordered Quasi-1d Rings 34

iii



4.1 Physical System and Modeling . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Drude Conductance . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Drude-Kubo Conductance . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 SLRT: Mesoscopic Conductance . . . . . . . . . . . . . . . . . . 41

4.2 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Diffusive Regime: Random Waves Conjecture . . . . . . . . . . . 46

4.2.2 Non-Ergodicity of Wavefunctions . . . . . . . . . . . . . . . . . . 47

4.2.3 Structural Analysis of the Perturbation Operator . . . . . . . . . 49

4.3 Random Matrix Theory Modeling . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Log-Box Distribution of Matrix Elements . . . . . . . . . . . . . 52

4.3.2 Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Generalized Variable Range Hopping Picture . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 SLRT for Systems at Metal-Insulator Transition: Preliminary Results 58

5.1 Harper Model and Criticality . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Landauer Picture at Critical Point . . . . . . . . . . . . . . . . . . . . . 63

5.3 Application of SLRT: Numerical Results . . . . . . . . . . . . . . . . . . 64

5.4 Fractal Structures of Perturbation Matrix . . . . . . . . . . . . . . . . . 67

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Summary and Perspectives 71

A Kramers-Kronig Relation 73

B Fluctuation-Diffusion Relation 76

C Connection Between Dissipation-Diffusion Relation and Kubo-Greenwood

Formula 78

D Hamiltonian in Adiabatic Basis 80



List of Figures

2.1 1d coupled pendulum system, a “mechanical analogue” to the electronic

1d tight-binding Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Localized eigenfunction in disordered lattice with random box distribution. 13

2.3 Comparison of numerical computations and approximations of localiza-

tion length for various disorders strtengths and energy values. . . . . . . 17

2.4 An illustration of a quasi-1d ring system. . . . . . . . . . . . . . . . . . 19

3.1 Geometry used in the Landauer conductance formulation. . . . . . . . . 33

4.1 The phenomenology of energy absorption in mesoscopic rings. . . . . . . 37

4.2 Illustration of resistor network picture in energy space. . . . . . . . . . . 43

4.3 Scaled conductances G̃Drude, G̃Kubo, and G̃meso versus disorder strength

w for a quasi-1d ring with L = 500 and M = 10. . . . . . . . . . . . . . 45

4.4 Participation ratio, as a characterization of ergodicity, versus disorder w

for disordered quasi-1d rings in various space representations. . . . . . . 48

4.5 Perturbation matrix |vnm|2 of disordered quasi-1d rings for ballistic, dif-

fusive, and localized regimes. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Bimodal distribution, an idealized distribution function for perturbation

matrix elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 The cumulative distribution F (X) of perturbation matrix elements X =

|vnm|2 for disordered quasi-1d ring with various values of disorder. . . . 52

v



4.8 Matrix sparsity measure p versus disorder strength w. . . . . . . . . . . 54

4.9 The ratio Gmeso/GKubo versus L/lm = G̃−1
Drude, based on the numerics of

Fig. 4.3, compared with the results from the “untextured” matrices, and

artificial RMT modeling using sparse matrices with log-normal or log-box

distribution of matrix elements. . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Husimi functions for the Harper model with various values of potential

strength λ, for an eigenstate that is close to the band center and L = 377. 62

5.2 Plot of the energy spectrum versus σ for the Harper model, more com-

monly known as Hofstadter butterfly. . . . . . . . . . . . . . . . . . . . . 63

5.3 Natural logarithm of transmission coefficient T versus natural logarithm

of system size L for the Harper model with energy E = 0 and various

values of σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Scaled conductances G̃Drude, G̃Kubo, and G̃meso versus potential strength

λ for the Harper ring model with L = 1000 and σ = (
√

5− 1)/2. . . . . 65

5.5 Scaled conductances G̃Drude, G̃Kubo, and G̃meso versus ring circumference

L for the Harper ring model at the critical point. . . . . . . . . . . . . . 66

5.6 Scaled mesoscopic conductance G̃meso versus ring circumference L for the

Harper ring model for various values of σ. . . . . . . . . . . . . . . . . . 66

5.7 Different cuts of the perturbation matrix |vnm|2 for the Harper ring

model, which shows self-similar structures. . . . . . . . . . . . . . . . . . 68

5.8 Cumulative distribution F (X) of perturbation matrix elements X =

|vnm|2 for the Harper model. . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 The path of the integration of Eq. A.1 . . . . . . . . . . . . . . . . . . . 73



List of Tables

2.1 Analogy between tight-binding Hamiltonian terms and coupled pendulum

system terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

vii



Chapter 1

Overview

Mesoscopic physics unifies systems with scales between microscopic and macroscopic.

The typical sizes of these systems are of the order of nanometers. On such small scales

the physics is dominated by quantum mechanics: the electrons are described by wave-

functions, with a phase which remains coherent across the system. Complex wave-

functions have both magnitude and phase—many quantum effects involve these phases.

The most important quantum/wave property of electrons in the mesoscopic scale is the

interference. The experimental signature of mesoscopic interference is the appearance

of reproducible fluctuations in physical quantities like the conductance. The behavior

and statistical properties of the conductance in various physical set-ups (for example,

quantum dots, rings, or low dimensional conducting channels) was the subject of many

theoretical and experimental studies during recent years [1–3].

In a typical experiment that aims to calculate the conductance of mesoscopic rings [4],

a collection of mesoscopic rings are placed within a time dependent magnetic flux Φ(t)

which creates an electromotive force −Φ̇(t) in each ring. This results in an induced cur-

rent which, according to Ohm’s law, is I = −GΦ̇. Consequently, the energy absorption

rate is given by Joule’s law W = GΦ̇2, where G in this context is called the conduc-

tance. Kubo formalism for conductivity, based on linear response theory (LRT), has

1



Chapter 1. Overview 2

been applied to diffusive rings [5, 6], and in this case the conductance is equivalent to

that calculated using the semiclassical Drude model. Previous studies have focused on

the corrections to the Drude results due to weak localization [7,8]. These corrections do

not change the leading order of Drude-Kubo results, as they are only of the order ∆/Γ,

where ∆ is the mean energy level spacing, and Γ indicates a level broadening due to

environmental interactions. What happens to the Drude result if the disorder becomes

weak (ballistic case) or strong (Anderson localization case)? In both cases the individual

eigenfunctions become nonergodic. In the ballistic case a typical eigenfunction is not

ergodic over the open modes in momentum space, while in the strong-localization case it

is not ergodic over the ring in real space. A lack of quantum ergodicity implies that the

perturbation matrix (current operator) is very structured and/or sparse. Consequently,

the calculation of G requires a nontrivial extension of LRT. Such an extension has been

proposed in [9] and later termed “semilinear response theory” (SLRT) [10]. In general,

SLRT can be approached as a resistor network hopping picture [11] in energy space,

which is a generalization of the real space hopping picture of [12,13].

In this Thesis, we apply SLRT to two types of ring systems. The first system is a

disordered quasi-1D ring, where we try to understand analytically the dependence of

the conductance on disorder strength and sample length. The second one is the Harper

Model, which is a one-dimensional system that exhibits metal-insulator transition, and

shows fractality of the eigenfunctions and of the energy spectra at the critical point.

We are interested in studying the nature of the conductance at the critical points, and

what effect the fractal structures might have on the mesoscopic conductance.

The structure of the Thesis is as follows:

• In Chapter 2 we will discuss about disordered systems and Anderson localization

in general. This includes the introduction of the mathematical model that we

will use, the sources of disorder, and localization length as an observable used to

quantify localization phenomena. We end this chapter by discussing modification
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of our model in order to describe dirty mesoscopic rings.

• Chapter 3 deals with the methods of calculating conductance in mesoscopic sys-

tems, starting from the semiclassical Drude method, followed by Kubo formula and

which is based on LRT. We also briefly mention two other methods to calculate

conductance, which are the Thouless approach and Landauer formulation.

• In Chapter 4, we apply SLRT to a disordered quasi-1D ring system [14,15], where

we build an analytical model to understand the departure of SLRT results from

LRT in ballistic and localized regimes. We then introduce a random matrix theory

(RMT) model based on the results of our numerical analysis on the statistical

properties of the current operator matrix elements, and propose a generalization

of the variable range hopping (VRH) estimate of the conductance. In all cases, a

critical comparison between the numerical results of the Anderson ring system and

of the outcomes of the theoretical modeling is performed. Important conclusions

for the validity of the proposed theoretical modeling are drawn.

• In Chapter 5, we apply SLRT calculations to systems at critical conditions [16].

Specifically we study the Harper model and discuss the departure of SLRT results

from Landauer and LRT results due to the emerging fractality of the eigenstates

and energy spectra at critical point. This is currently a work in progress and will

pave the way in understanding more realistic situations with critical behaviour,

like Quantum Hall systems.

• Finally, in Chapter 6 we summarize the findings of this Thesis, and discuss nu-

merous ideas to extend the scope of this research and the applicability of SLRT.



Chapter 2

Disordered Systems

In a disordered system, real space localization and absence of diffusion of a quantum

particle can occur, depending on the geometry (one or higher dimensions) of the system

and the strength of the disorder. This localization phenomenon was first predicted by

P. W Anderson [17], hence the phenomenon is often called Anderson localization. Since

then, Anderson localization phenomena have been studied in different types of disor-

dered systems. The main outcome of these studies was that Anderson localization is a

wave-interference phenomenon with a vast majority of applications ranging from elec-

tron motion in dirty metals to light propagation in random dielectric materials.

This chapter deals with the presentation of some fundamental ideas applied in disordered

systems and Anderson localization in general. In Section 2.1 we introduce the proto-

type model that describes electron propagation in disordered lattices: the Anderson

tight-binding model. Transfer matrix method, a numerical method that allows one to

calculate the asymptotic structure of the eigenmodes of a disordered lattice, is described

in Subsection 2.1.2. Section 2.2 discusses the effect of one impurity in an otherwise per-

fect (translationally invariant) lattice. In Section 2.3 we discuss the localization length,

an observable that can be used to quantify the degree of randomness in the system and

the resulting localization phenomena. The Thouless relation indicates the connection

4



Chapter 2. Disordered Systems 5

between localization length and density of states, and is introduced in Subsection 2.3.2.

Approximations of localization length for weak disorder values are discussed in Sub-

section 2.3.3. In Section 2.4 we close with the application of the tight-binding model

to ring systems, and expand on one of the systems we will analyze in this Thesis, the

quasi-1d ring, and how it is different from simple 1d rings and 2d lattices.

2.1 Tight-Binding Model

Below, we will work in the Wannier basis. The basis states are concentrated at indi-

vidual lattice sites, making the Wannier basis a good choice for studying localization

phenomena in position space. We will use bra-ket notation, where |n〉 is defined as the

Wannier basis state which is localized at site n. For a wavefunction ψ, 〈n|ψ〉 represents

the amplitude of ψ at site n.

A simple model of a particle in a lattice can be given by the Hamiltonian

Ĥ =
∑
n

εn|n〉〈n|+
∑
〈n,m〉

Vnm|n〉〈m|, (2.1)

where 〈n,m〉 denotes that n and m are nearest neighbors. The first sum (the ”on-site

potential” terms) comes from the potential energy of atoms located at the n-th site of

the lattice, and the second sum (the ”nearest neighbor interaction” terms) comes from

the kinetic energy terms [18]. The disorder in the system can be created by making εn

or Vnm random.

Now we consider the case of a 1d lattice with L sites. We assume the nearest neighbor

interaction strength is constant everywhere, Vnm = V . The Hamiltonian of Eq. 2.1 can
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be written as an L× L matrix,

H =



ε1 V 0 0 · · · 0

V ε2 V 0

0 V ε3 V
...

0 0 V ε4
...

. . .

0 · · · εN


. (2.2)

The corresponding eigenvalues and eigenvectors can be found by a direct diagonalization

of the above Hamiltonian matrix.

2.1.1 Periodic Lattice

We consider the case of a periodic lattice, where εn = ε for all sites. From the tight-

binding Hamiltonian, we can get a set of L simultaneous equations

V cn+1 + V cn−1 + εcn = Ecn, (2.3)

where cn = 〈n|ψ〉 is the value of the corresponding wavefunction at site n.

In a periodic lattice, Bloch’s Theorem applies (see [19]) and hence the wavefunction can

be written in the Bloch form

cn+R = cn exp(ikR), (2.4)

where k is the wavenumber and R is the periodicity of the lattice. As a result, we can

use the ansatz cn = A exp(inkR) to Eq. 2.3 to obtain

E = ε+ 2V cos(kR). (2.5)

To find the possible values of k, we use hard wall boundary conditions at both ends of

the lattice (sites 0 and L+1). The phase difference (nkR) between the two ends should
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be an integer multiple of π, and we get the condition k = m
(L+1)Rπ, where m = 1, . . . , L.

Finally, the energy values can be written as

E = ε+ 2V cos
(

m

L+ 1
π

)
. (2.6)

It is interesting here to note the similarity between Eq. 2.3 and the discretized equations

of motion of a coupled pendulum system [20],

mω2
0xn − kxn+1 − kxn−1 = mω2xn. (2.7)

The parameters of the above equation are explained in Table 2.1, which describes the

analogy between parameters of the tight-binding Hamiltonian and the coupled pendu-

lum system. The analogy is also visualized in Fig. 2.1

Figure 2.1: 1d coupled pendulum system, a “mechanical analogue” to the electronic 1d tight-

binding Hamiltonian. Figure from [20]

Tight-binding Hamiltonian Coupled pendulum system

cn: eigenvector component at site n xn: displacement of pendulum at site n

V : nearest-neighbor interaction −k: minus spring constant between coupled sites

E: energy eigenvalue mω2: square of eigenfrequency times mass

ε: on-site potential mω2
0 : square of uncoupled eigenfrequency times mass

Table 2.1: Analogy between tight-binding Hamiltonian terms and coupled pendulum system

terms. Table adapted from Table 5.1 in [20]
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Thus many of our results associated with the motion of an electron in a lattice, described

by Eq. 2.3, can be easily extended to systems described by coupled oscillators (for

example phononic excitations associated with the vibrations of a lattice).

2.1.2 Transfer Matrix Method

To find the energies and eigenvectors of the disordered system, we can diagonalize the

Hamiltonian matrix of Eq. 2.2. For very large L, this will require a large amount of

time and considerable computer memory, and thus can be very ineffective. In this case,

transfer matrix method can be used instead.

Recall the sets of simultaneous equations from the previous section. Eq. 2.3 can be

written in matrix form as cn+1

cn

 = Tn

 cn

cn−1

 . (2.8)

where Tn is the transfer matrix defined as

Tn ≡

(E − εn)/V −1

1 0

 . (2.9)

If we consider Eqn, 2.8 from 1st site to n-th site, we can write the wavefunction for the

n+1 -th site as cn+1

cn

 =
n∏
k=1

Tk

c1
c0

 . (2.10)

Therefore, provided that we know two components (for example c0 and c1) of the wave-

function for an energy value E, we can find all the remaining cn’s by using Eq. 2.10.

As an example, we will again solve for the eigenvalues of a periodic lattice with hard

wall boundary conditions (see previous subsection) using the transfer matrix method.

In this case, the transfer matrix of Eq. 2.9 becomes independent of n, i.e. Tn = T . As
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a result, Eq. 2.10 becomescn+1

cn

 =
n∏
k=1

T

c1
c0

 = Tn

c1
c0

 =

T (n)
11 T

(n)
12

T
(n)
21 T

(n)
22

c1
c0

 , (2.11)

where T (n)
ij are the matrix elements of Tn. From Eq. 2.11 we obtain an expression for

cn+1

cn+1 = T
(n)
11 c1 + T

(n)
12 c0. (2.12)

For a lattice of L sites, we can use the hard wall boundary condition (c0 = cL+1 = 0),

which together with Eq. 2.12 results in the following relation

T
(L)
11 c1 = 0. (2.13)

If c1 = 0 then we get the trivial solution i.e. all cn = 0. This leads us to the conclusion

that

T
(L)
11 = 0. (2.14)

Next we will solve for the nontrivial case. Let α1 and α2 be eigenvalues of T . Then αL1

and αL2 are eigenvalues of TL. Also let x̂1 and x̂2 be the eigenvectors of TL. Since T is

a 2× 2 matrix, we can write the relation

TL = d1T + d0I =

(E−εV )
d1 + d0 −d1

d1 d0

 , (2.15)

where I is the identity matrix, and d0 and d1 are numbers. Using Eq. 2.15, we can write

the following expression for TL,

TLx̂1 = αL1 x̂1 = (d1T + d0I)x̂1 = (d1α1 + d0)x̂1

TLx̂2 = αL2 x̂2 = (d1T + d0I)x̂2 = (d1α2 + d0)x̂2

(2.16)

from which we can obtain the simultaneous equations

αL1 = d1α1 + d0

αL2 = d1α2 + d0.
(2.17)
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These two equations have the solutions

d1 = αL
1−αL

2
α1−α2

d0 = αL
1 α2−αL

2 α1

α2−α1
.

(2.18)

We can find the values of αis by setting det(T−Iα) = 0 and we obtain the equation

α2 − E − ε

V
α+ 1 = 0. (2.19)

We also find that α1α2 = 1, and the discriminant of Eq. 2.19 is
(
E−ε
V

)2 − 4. Since a

periodic lattice follows Bloch’s Theorem, the x̂’s need to be extended, and so the α’s

needs to be complex. The discriminant should be negative, and we obtain
∣∣E−ε
V

∣∣ <
2.

As a result of this, we can use the ansatz
∣∣E−ε
V

∣∣ = 2 cosϕ. Using this ansatz to find the

eigenvalues of T , we obtain

α1 = exp(iϕ)

α2 = exp(−iϕ).
(2.20)

Using this result to Eq. 2.18 we get

d1 = sin(Lϕ)
sinϕ

d0 = − sin[(L−1)ϕ]
sinϕ .

(2.21)

Finally using the ansatz, 2.21, and the condition of Eq. 2.14 to Eq. 2.15 we obtain

2 cosϕ
sin(Lϕ)
sinϕ

=
sin[(L− 1)ϕ]

sinϕ
. (2.22)

This equation leads to the the following relation for ϕ

sin[(L+ 1)ϕ] = 0. (2.23)

This results in the condition ϕ = m
L+1π where m = 1, . . . , L. If we put the condition for

ϕ to the ansatz, we obtain the energy values

E = ε+ 2V cos
(

m

L+ 1
π

)
, (2.24)

the same as Eq. 2.6.

We will utilize this method in Section 2.3 to derive the formula for localization length

of disordered systems.
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2.2 Impurities

In general, lattices are not purely periodic, but they can have impurities. Impurities can

be caused by several factors, for example irregular spacing in the crystals, the presence of

a different “species”, or other such factors. These impurities result in strong deviations

from the periodic behavior.

To understand the effect of impurities, we will first consider the case of a periodic lattice

with only one impurity. We consider a lattice as in Subsection 2.1.1, with L→∞ and

εn = 0 except at site n = 0, where the impurity is located, ε0 6= 0 (n goes from −∞ to

∞). For simplicity, R = 1, V = 1.

We recall the simultaneous equations of Eq. 2.3. For a uniform lattice (lattice with no

impurities), if we use the ansatz cn = A exp(γn) we obtain

[exp(γ)]2 − E exp(γ) + 1 = 0. (2.25)

For the periodic lattice case (see 2.7), |E| < 2, and the quadratic equation of Eq. 2.25

has a negative discriminant (and complex exp(γ)). Hence we can conclude that the

eigenstate associated with the impurity needs to have |E| > 2 (and real exp(γ)). The

wavefunction needs to be normalized, so we can further assume

cn =


A exp(−γn) if n > 0

B exp(γn) if n < 0,
(2.26)

where γ > 0. Applying this ansatz to Eq. 2.3 for sites n = 1 and n = −1 gives

[E − exp(γ)] exp(γ)(A−B) = 0. (2.27)

exp(γ) = 0 is the trivial solution and exp(γ) = E is an impossible solution since we

need to have both |E| > 2 and exp(γ) < 1. So the only possible solution is A = B.

Using this result and the fact that wavefunction should match from both positive and

negative values of n, we get c0 = A.
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By applying all these requirements to Eq. 2.3 for n = 0 we obtain the relation

E = 2 exp(γ) + ε0. (2.28)

Applying this result to Eq. 2.25 (for the remaining sites) we obtain the energy

E = ±(ε20 + 4)1/2. (2.29)

If there is no impurity (ε0 = 0), E = ±2, so the new energy is taken out from the edge

of the energy spectrum of the uniform lattice. Also, it is important to note that from

Eq. 2.26 the wavefunction associated with the presence of the impurity is exponentially

localized at the impurity site. Thus, it is natural to expect that if we add more random

impurities to the system, they will give rise to additional localized states. When all the

on-site potentials have random values, we have a disordered system, and we can assume

that the eigenmodes of such a system are localized and uniformly distributed over the

lattice.

2.3 Localization Length

To find the eigenmodes of disordered systems, we can use the method described in the

previous section step-by-step for each additional impurity, but this is definitely very

time consuming. We can also use computational methods such as Hamiltonian matrix

diagonalization, which we will use extensively in the later chapters. On the other hand,

there are observables that can be used to quantify the localization phenomena. One

such observable is the localization length.

2.3.1 Definition

The localization length is defined such that the localized wavefunction approximately

follows the exponential relation in the |n| → ∞ limit (see the conclusion of Section
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Figure 2.2: Localized eigenfunction in disordered lattice with random box distribution with

disorder strength w. The value of |cn|2 in the plot is the result of averaging 5 states with similar

energies (E ≈ 0). The localization site is defined as the site n = 0.

2.2)

cn = cn0 exp
(
−|n− n0|

l∞

)
, (2.30)

where n0 is the site where the wavefunction is localized. The localization length itself

can be written as

l−1
∞ = − lim

n→∞

1
|n|
〈 ln
∣∣∣∣ cncn0

∣∣∣∣ 〉, (2.31)

where 〈. . .〉 means we average over different disorder realizations of the random poten-

tial.

2.3.2 Thouless Relation

We consider Eq. 2.10, assuming that c0 and c1 are known. For the N -th site and an

energy value E, we can solve for cN to find that cN (E) is a polynomial of E with degree
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N − 1

cN (E) = A
N−1∏
n=0

(E − En), (2.32)

where A is a constant and En the roots of the polynomial. Eq. 2.32 can be written

as

cN (E) = A
N−1∏
n=0

|E − En| exp[iπH(En − E)], (2.33)

where H(x) is the Heaviside function of x. We define

Λ(E) ≡ lim
N→∞

1
|N |

ln
∣∣∣∣cN (E)

c0

∣∣∣∣ . (2.34)

Using Eq. 2.33 we obtain

Λ(E) =
1
N

∑
n

ln |E − En|+
iπ

N

∑
n

H(En − E)

≈
∫ +∞

−∞
dE′ρ(E′) ln |E − E′|+ iπ

∫ +∞

−∞
dE′ρ(E′)H(E′ − E) (2.35)

for the limit N → ∞, where ρ(E) is the averaged density of states. We can further

change the second integral of Eq. 2.35 to∫ +∞

−∞
dE′ρ(E′)H(E′ − E) =

∫ +∞

E
dE′ρ(E′) ≡ I(E), (2.36)

where I(E) is defined as the integrated density of states. We can rewrite Eq. 2.35

as

Λ(E) =
∫ +∞

−∞
dE′ρ(E′) ln |E − E′|+ iπI(E). (2.37)

The first term is always real and the second term is always imaginary. Thus the function

Λ(E) can be used to find the integrated density of states, and hence also the density of

states by

I(E) = Im
[
Λ(E)
π

]
(2.38)

and

ρ(E) = −dI(E)
dE

. (2.39)
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Furthermore, since the cn’s are complex numbers they can be written as cn = |cn| exp(iϕn)

where ϕn represents the phase. Substituting this into the definition of Λ(E) (Eq. 2.34)

gives

Λ(E) = lim
N→∞

1
N

[
ln
∣∣∣∣cNc0

∣∣∣∣+ i(ϕN − ϕ0)
]
. (2.40)

Again, the first term is always real and the second term is always imaginary. The real

term of Eq. 2.40 is similar to the definition of localization length of Eq. 2.31, and hence

we can write the localization length as

l−1
∞ = Re[Λ(E)] =

∫ +∞

−∞
dE′ρ(E′) ln |E − E′|. (2.41)

In the above expression ρ(E) has to be understood as the average density of states

〈ρ(E)〉. This relation was first derived by Thouless using a Green’s function formalism

[21].

2.3.3 Weak Disorder Approximations of Localization Length

For a disordered system with a weak disorder strength, one can calculate (using per-

turbation theory) the resulting localization length as a function of energy and disorder

potential. We consider again the simultaneous equations of Eq. 2.3, and rewrite them

as

cn+1 + cn−1 + λεncn = Ecn, (2.42)

where λ is a small parameter. In addition we define the ratio of the wavefunctions

Rn ≡
cn
cn−1

. (2.43)

Eq. 2.42 can then be written as

Rn+1 = (E − λεn)−
1
Rn

. (2.44)

The definition of localization length of Eq. 2.31 becomes

l−1
∞ = lim

N→∞

1
N
〈
N∑
n=1

ln |Rn| 〉. (2.45)
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To find the localization length, we use the ansatz [22]

Rn = A exp(λBn + λ2Cn + λ3Dn + . . .), (2.46)

where the Bn, Cn, Dn, . . . are independent of λ. Applying the ansatz to Eq. 2.44, taking

the Taylor expansions of Rn+1 and Rn, and finally equating the same powers of λ, we

obtain a set of equations

λ0 : A = E −A−1 (2.47)

λ1 : ABn+1 = εn −A−1Bn (2.48)

λ2 : A[Cn+1 + 1
2B

2
n+1] = A−1[Cn − 1

2B
2
n] (2.49)

· · ·

We need to find the values of A, Bn, Cn, Dn, . . ., averaged over multiple disorder

realizations. Let us assume, without loss of generality, that 〈εn〉 = 0 and 〈ε2n〉 = σ2,

where σ2 is the variance of the disorder. From Eq. 2.47 we obtain

A =
1
2
[E ±

√
E2 − 4], (2.50)

a constant number, and from Eq. 2.48 we obtain

〈Bn〉 = 0. (2.51)

As shown in Eq. 2.48, Bn depends on εn−1 and Bn−1, but not to εn, and this continues

up to n = 1. Hence, we can write 〈εnBn〉 = 〈εn〉〈Bn〉 = 0 to obtain

〈B2
n〉 =

A2

A4 − 1
σ2, (2.52)

and apply this to Eq. 2.49 to obtain

〈Cn〉 = −1
2

A2

(A2 − 1)2
σ2. (2.53)

If we apply these results to Eq. 2.45 we obtain the value of the inverse localization

length

l−1
∞ = lim

N→∞

1
N

N∑
n=1

{〈lnA〉+ λ〈Bn〉+ λ2〈Cn〉+ . . .} ≈ 1
2

σ2

(4− E2)
. (2.54)
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The disorder potentials used in the simulations that we have performed in later chapters

follow a box distribution with range [−w/2, w/2], and the variance is σ2 = w2/12. In

this case the localization length becomes

l∞ = 24
(4− E2)
w2

. (2.55)
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Figure 2.3: Numerical computations of l∞ (solid lines) compared with the approximations of

l∞ (dashed lines) for: (a) w varied, E = 2 cos(
√
π), (b) w = 1, E varied, (c) w = 3, E varied,

(d) w = 10, E varied.

Fig. 2.3 compares the results of this approximation with the actual localization lengths

for various values of w and E. One can see a nice agreement between the numerical and

perturbative results for weak disorder values, while for stronger values of the disorder

deviations for the theoretical prediction Eq. 2.55 are evident. At the same time, we have



Chapter 2. Disordered Systems 18

some noticeable deviations for energies at the center of the band and the band edges.

These deviations were studied quite carefully in the past and their origin was identified

to be related to resonance phenomena associated with rationality of the wavenumbers

to the lattice periodicity [22].

2.4 Ring Geometries: Thin Rings and Quasi-1d Rings

The focus of this Thesis is on the analysis of the mesoscopic conductance of disordered

rings in the presence of a time-dependent magnetic field. The mathematical model that

describes such a physical set-up is the tight-binding Hamiltonian (Eq. 2.1) supplemented

with periodic boundary conditions. The Hamiltonian matrix in the Wannier basis is

written as

H =



ε1 Vφ 0 0 · · · V ∗
φ

V ∗
φ ε2 Vφ 0

0 V ∗
φ ε3 Vφ

...

0 0 V ∗
φ ε4

...
. . .

Vφ · · · εN


, (2.56)

where Vφ = V exp(iφ) and φ is the phase of the coupling, which is contributed by the

magnetic flux.

A quasi-1d ring can be constructed by stacking multiple thin rings on top of each other,

and putting nearest-neighbor interaction between rings as well, effectively creating a

thick ring (see Fig. 2.4). There are now two parameters for the system, L—the number

of sites on each ring (or nodes), and M—the number of thin rings (or stripes), with

L�M � 1. In particular, we consider the case where the nearest-neighbor interaction

term is 1 between neighboring sites in the same thin ring (longitudinal), and c across

thin rings (transverse). The Hamiltonian is an LM ×LM matrix but can be written as
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Figure 2.4: An illustration of a quasi-1d ring system. The dots represent the sites and the

lines connecting them represent the nearest neighbor interactions.

an M ×M matrix with L× L matrices as matrix elements

Hquasi-1d =



H C 0 0 · · · 0

C H C 0

0 C H C
...

0 0 C H
...

. . .

0 · · · H


, (2.57)

where H is the L × L Hamiltonian matrix for thin ring (Eq. 2.56), C = cI (I is the

identity matrix), and 0 a matrix of all zeros.

The localization length of a quasi-1d system is different from the one of a 1d system, due

to the availability of additional M propagating channels. If l1d∞ is the localization length

of a 1d system, then according to Thouless [23], the localization length of a quasi-1d

system lquasi-1d
∞ will be

lquasi-1d
∞ ≈Ml1d∞ . (2.58)

It is important to note that the localization length of a quasi-1d system is also different

from the one of a true 2d system (L ∼ M), since in 2d systems the localization length
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follows the relation [24,25]

l2d∞ ∼ exp(1/w2) ∼ exp(l1d∞). (2.59)

To be able to observe localization phenomena, we need the system size to be larger than

the localization length, and the localization length to be larger than the mean free path of

the system lm, which is the average distance covered by the electron between subsequent

scattering events. But when the system is too large, we can lose phase coherence and

wave interference phenomena (which are the origin of Anderson localization) die out.

For 1d systems, lm ∼ l1d
∞ . For quasi-1d systems, from Eq. 2.58, we see that l∞ ∼ Mlm

while for 2d systems, from Eq. 2.59, we obtain l∞ ∝ exp(lm). As a result, to observe

localization phenomena in 1d and quasi-1d, we need a linearly increasing system size

for systems with increasing mean free paths. On the other hand, we need exponentially

increasing system size in 2d systems, and hence it is very hard to observe localization

phenomena in 2d systems, as well as computationally ineffective. This is the reason we

will not do any 2d simulations in this study.



Chapter 3

Conductance of Mesoscopic

Systems

The response of conductors to external driving sources is a central theme in solid state

theory. The advent of mesoscopic physics has brought forward questions concerning

the nature of the conductance and the origin of dissipation in finite quantum coherent

systems. Certain approximation schemes, which lead to satisfactory descriptions of

conductors, fail in the mesoscopic regime. The present chapter will be restricted to

Linear Response Theory (LRT). We will consider weakly interacting fermionic systems

confined in a potential well. The independent particle picture is natural for fermion

systems at low temperatures, because the low energy excitations can be modeled as

independent quasi-particles [26]. One may divide the systems of interest into two types:

(i) those which are coupled to the biasing source through external leads and (ii) finite

conductors with no leads. There are commonly two approaches for calculating the

conductance of finite quantum conductors. The first is due to Kubo and Greenwood.

The second is due to Landauer. The latter was remarkably successful in accounting for

the DC conductance of finite samples with leads, employing the physically appealing

scattering matrix approach. These two approaches have been shown to be equivalent

21
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and constitute the cornerstones of our understanding of mesoscopic transport.

The structure of this chapter is as follows: In Section 3.1 we introduce the Drude model

which is the basic model used to describe the conductance of a metallic sample. Then,

we will introduce the Kubo formalism and explain how one can derive in a traditional

way the Kubo conductivity of a mesoscopic system. Two versions of the Kubo formula

will be given: the Kubo-Greenwood formula often used in solid-state application and

the Diffusion-Dissipation Relation. In the remaining part of the chapter, we briefly

discuss two other methods to determine conductance. The first one is the Thouless

approach, which describes the conductance in terms of the sensitivity to changes in

energy eigenvalues due to small perturbations of the system. The second one is the

Landauer approach mentioned above, which describes the conductance in terms of the

scattering properties of the system.

3.1 Drude Model

Paul Drude developed a simple model to explain the transport properties of electrons

in a metal. This model assumes that the positive ions are stationary, and the electrons

are free to move around. The electrons are not interacting with positive ions and with

each other, and follow the classical Maxwell-Boltzmann distribution.

We consider an electron in a sea of fixed scatterers (in this case, positive ions) with the

mean time between collisions of electron and a scatterer to be τ . An external electric

field ~E is also applied to the system. Assume at time t the velocity of the electron is

~v(t). Between time t and t+dt, the probability of having a scattering event is dt
τ , so the

probability of not having a collision event is
(
1− dt

τ

)
. If there is no collision event, the

velocity of the electron will change by ~dv, dictated by Newton’s law m
~dv
dt = ~F (t) = −e~E .

If we average over all possibilities, the electron follows the equation

~v(t+ dt) =
(

1− dt

τ

)
(~v + ~dv). (3.1)
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Let us consider for simplicity a one-dimensional (1d) motion of the electrons, and use

the definition dv = v(t+ dt)− v(t). Then Eq. 3.1 can be rewritten as

dv

dt
= −eE

m
− v(t)

τ
, (3.2)

which is equivalent to

mẍ+
m

τ
ẋ = −eE . (3.3)

The above equation describes the motion of a particle under a constant force and a

damping force which is proportional to the velocity of the electron, with a proportion-

ality factor γ = m
τ . After some time, a particle under these forces will reach a steady

state velocity v∞. Steady state velocity can be determined by setting dv
dt = 0 in Eq. 3.2.

In this case we obtain

v∞ = −eE
m
τ. (3.4)

On average, the electrons are moving anti parallel (due to their negative charge) to

the field with a velocity v∞. For the case of a box-shaped conductor with length L,

cross-section A, and electron density ne under an electric field E parallel to its length,

the current density j is

j =
I

A
=

1
A

dq

dt
= −neev∞ =

(
nee

2τ

m

)
E . (3.5)

From Ohm’s law we further have j = σE where σ is the conductivity. Direct comparison

with Eq. 3.5 gives that

σDrude =
nee

2τ

m
, (3.6)

where the mean time τ between collisions can be written in terms of the Fermi velocity

vF and the mean free path lm as τ = lm/vF .

For a d-dimensional system, the conductance can be written as G = (Ld−1/L)σ. One

can further evaluate the electronic density ne, which in 1, 2, and 3-dimensions are

ne = 2kF /π, k2
F /(2π) and k3

F /(3π
2) (where kF is the Fermi wavenumber) respectively.
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For the 1d case, after substituting the electronic density in Eq. 3.6 and expressing τ in

terms of the mean free path, we get for the Drude conductance

GDrude =
2e2

π~
lm
L
. (3.7)

3.2 Kubo-Greenwood Formula

In general, the current density ~j = (jx, jy, jz) due to an electric field ~E can be written

as

jα(~r, t) =
∑
β

∫ ∞

0
dτ

∫
d~r′ σαβ(~r, ~r′; τ) Eβ(~r′, t− τ), (3.8)

where we used subscripts α and β to denote Cartesian coordinate components. σαβ is

the generalized conductivity tensor and Eβ is the β-component of the electric field [20].

If we consider the case of a 1d system, Eq. 3.8 becomes

j(x, t) =
∫ ∞

0
dτ

∫
dx′ σ(x, x′; τ) E(x′, t− τ). (3.9)

An assumption that we use in this section is that the disorder is weak enough such that

the localization length is much larger than the system size, l∞ � |x|. Another assump-

tion is that the electric field is homogenous, E(x′, t) ≈ E(t). Using these two assump-

tions, we conclude that the current density is also homogenous, j(x′, t) ≈ j(t).

The current density, averaged over x can be written as

j̄(t) = 〈j(t)〉x =
1
V

∫
dx

∫ ∞

0
dτ

∫
dx′ σ(x, x′; τ) E(t− τ)

=
∫ ∞

0
dτ σ(τ) E(t− τ), (3.10)

where σ(τ) is the averaged conductivity

σ(τ) =
1
V

∫
dx dx′ σ(x, x′; τ). (3.11)
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We also define σ(ω) as the Fourier transform of σ(τ). The relation between the two can

be written as

σ(ω) =
∫
dτ σ(τ) exp(iωτ);

σ(τ) =
1
2π

∫
dτ σ(ω) exp(−iωτ). (3.12)

Let us further assume that the electric field is a time-dependent monochromatic field

E(t) = F exp(iωt) + F ∗ exp(−iωt). (3.13)

Using Eq. 3.13 and Eq. 3.12 we can rewrite the current density of Eq. 3.10 as

j(t) = F exp(−iωt)σ(ω) + F ∗ exp(iωt)σ(−ω). (3.14)

The current density is an observable, and hence its value must be real. This gives the

condition

σ(ω) = σ∗(−ω). (3.15)

As σ(ω) is complex, we can decompose it into its real and imaginary parts, σ(ω) =

σr(ω) + iσi(ω). By writing σ(ω) in this form, we can obtain the relation for each of the

components as well. Specifically we have that

σr(ω) = σr(−ω), (3.16)

σi(ω) = −σi(−ω). (3.17)

The above relations indicate that the real component of σ(ω) is symmetric, while the

imaginary component is antisymmetric.

We can find the average rate of energy dissipated by the conductor by using Joule’s

law

〈W〉t = V 〈E j〉t

= V 〈[F exp(iωt) + F ∗ exp(−iωt)] [F exp(−iωt)σ(ω) + F ∗ exp(iωt)σ(−ω)]〉t

= V |F |2(σ(ω) + σ(−ω)) = 2V |F |2σr(ω). (3.18)
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where we have used the relations Eq. 3.16 and Eq. 3.17.

We can also think of the dissipated energy as the energy absorbed from the system due

to all possible transitions between states,

W =
∑
α,β

α 6=β

EβαΓα,β, (3.19)

where Eβα = ~ωβα = Eβ − Eα is the energy absorbed by the system during the field-

induced transition from state |α〉 to state |β〉, and Γα,β is the rate of the same transition.

This transition rate Γα,β can be written as

Γα,β = fα(1− fβ)
dWαβ

dt
, (3.20)

where fα(Eα) and fβ(Eβ) are Fermi occupation factor for states |α〉 and |β〉, respectively.

(fα is the probability to be at |α〉, and 1− fβ is the probability not to be at |β〉.) The

transition probability Wαβ from |α〉 to |β〉, assuming a Fermi Golden Rule (FGR)

transition, is given as (see [27,28])

Wαβ =
∣∣∣∣− i~

∫ +∞

−∞
dt′ exp(iωαβt′)〈α|H1|β〉

∣∣∣∣2 , (3.21)

where H1 = −exE is the Hamiltonian term that corresponds to the perturbation. Using

Eq. 3.13 for the electric field, we obtain

Wαβ =
e2

~2

∣∣∣∣∫ +∞

−∞
dt′ exp(iωαβt′)

〈
α|x

(
F exp(−iωt′) + F ∗ exp(iωt′)

)
|β
〉∣∣∣∣2

=
e2

~2
|〈α|x|β〉|2

∣∣∣∣F ∫ dt′ exp
[
i(ωαβ − ω)t′

]
+ F ∗

∫
dt′ exp

[
i(ωαβ + ω)t′

]∣∣∣∣2 .
(3.22)

Using the definition of the delta function δ(ω − ω′) ≡ 1
2π

∫
dτ exp [i(ω − ω′)τ ] we can

change the integral terms in Eq. 3.22 to obtain

dWαβ

dt
=

2πe2

~2
|F |2|〈α|x|β〉|2{δ(ω − ωαβ) + δ(ω + ωαβ)}. (3.23)
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We can omit one of the delta functions in the above equation. We then substitute

Eq. 3.23 into Eq. 3.20. This result is then substituted into the equation for energy

dissipation rate, Eq. 3.19, to obtain

W = 2
πe2

~
|F |2

∑
α,β

|〈α|x|β〉|2ωβα(fα − fβ)δ(ω − ωβα). (3.24)

Equating Eq. 3.18 with Eq. 3.24 we can find an expression for the real component of

the conductivity,

σr(ω) =
πe2

~V
∑
α,β

|〈α|x|β〉|2ωβα(fα − fβ)δ(ω − ωβα). (3.25)

To obtain the imaginary component of the conductivity, we can use Kramers-Kronig

Relation (see Appendix A)

σi(ω) = − e2

~V
∑
α,β

|〈α|x|β〉|2ωβα(fα − fβ)
1

(ω − ωβα)
. (3.26)

We can write the momentum operator as

p = m
dx

dt
= m

i

~
[H,x] = m

i

~
(Hx− xH), (3.27)

and we can use this result to write 〈α|x|β〉,

〈α|p|β〉 =
im

~
〈α|(Hx− xH)|β〉

=
im

~
〈α|x|β〉(Eα − Eβ)

〈α|x|β〉 =
i

m

〈α|p|β〉
ωβα

. (3.28)

Applying this result into Eq. 3.25 we obtain

σr(ω) =
πe2

m2V

∑
α,β

α 6=β

|〈α|p|β〉|2
(fα − fβ)

~ωβα
δ(ω − ωβα). (3.29)

Similarly, placing Eq. 3.28 into Eq. 3.26 we get

σi(ω) = − e2

m2V

∑
α,β

α 6=β

|〈α|p|β〉|2
(fα − fβ)

~ωβα
1

(ωβα − ω)
. (3.30)
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Electrons are fermions and hence follow Fermi-Dirac distribution. At T → 0, the shape

of the distribution is a step function and hence we can write the Fermi occupation term

in Eq. 3.29 as
fα − fβ
~ωβα

= −
(
∂f

∂E

)
E=Eα

= δ(Eα − EF ). (3.31)

Substituting the above expression in the relation Eq. 3.29 for the conductivity, we

get

σr(ω) =
πe2

m2V

∑
α,β

|〈α|p|β〉|2δ(Eα − EF )δ(ω − ωβα). (3.32)

The first delta function means that we are considering electrons that are near the Fermi

level. This is understandable, since due to Pauli’s Exclusion Principle, only these elec-

trons are responsible for conduction. The second delta function restricts transition

between levels to those that are apart in energy by one photon.

Since we shall be interested in the behavior of finite size systems, it is worth mentioning

how the sum in Eq. 3.32 can be evaluated. We consider a finitely sized system with

discrete energy spectrum. The applied constant electric field is described by a harmonic

vector potential in the limit ω → 0. A finite conductivity is the result of transitions

induced by the (ω dependent) electric field between levels separated by ~ω, so that by

keeping the system finite and taking the limit ω → 0, the conductivity vanishes. In

order to obtain a finite response, two methods are usually considered. One is to take

the thermodynamic limit first (for finite ω) so that the spectrum becomes continuous.

Then, the limit ω → 0 gives a finite conductivity. The other method, usually considered

for finite-size mesoscopic systems, assumes the existence of a weak coupling between the

system and external reservoirs through leads and contacts. This coupling is described

phenomenologically by an energy width Γ over which the energy levels are spread out

such that ~ω > Γ > ∆ (∆ being the mean level spacing), in order for the transitions

between the levels to be induced by the electric field only and not by the coupling to

the leads. Finally we consider the limits Γ → 0 and then ω → 0. Both methods are

equivalent and represent nothing more than a way to regularize the sum in Eq. 3.32.
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Keeping this in mind, one can rewrite the delta function as

δ(ω − ωβα) ≈ ~
2γbrd

exp
(
−

~|ω − ωβα|
γbrd

)
, (3.33)

where γbrd is the broadening parameter. Taking the limits as prescribed above we

obtain

σ =
πe2

m2V
~ |p|2 ρ2, (3.34)

where ρ = 1/∆ is the density of states per unit energy. The above equation is called

the Kubo-Greenwood formula [29,30].

3.3 Diffusion-Dissipation Relation

The standard formulation of Kubo [29] takes Linear Response Theory together with

thermal statistical assumptions. In this section we give another presentation which pro-

vides a more powerful picture of the conductance. Our starting point is the observation

that the reversible dissipation is related to the irreversible stochastic-like diffusion in

energy space induced to the system through the action of a “generalized” force. How it

is possible to get dissipation (irreversible growth of the mean energy) at all, given that

the up and down (in the energy spectrum) transitions are always equal? The answer

is that heating is possible because the density of states ρ(E) may differ slightly at the

two energies E = Em ± ~ω, leading to a “stronger” diffusion as we go up in energy. As

a result, the diffusion process is biased. Thus the average energy systematically grows

with time. Lets us try to describe the evolving process of the probability distribution

ν(E, t) defined as

ν(E, t) = ρ(E) f(E), (3.35)

where ρ(E) is the density of states and f(E) is the occupation function. For large times

it is argued [9] (and references therein), that the probability distribution ν(E, t) satisfies

the Fokker-Planck equation

∂

∂t
ν(E, t) =

∂

∂E

[
ρ(E)DE

∂

∂E

ν(E, t)
ρ(E)

]
(3.36)
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The average energy of the system is then 〈H〉 =
∫
dE ν(E, t)E while the average rate

of energy dissipation is

W =
d〈H〉
dt

=
d

dt

∫
dE E ν(E, t)

=
∫
dE E

∂

∂t
ν(E, t) dE =

∫
dE E

∂

∂E

[
ρ(E)DE

∂

∂E

ν(E, t)
ρ(E)

]
= E

∂

∂E

[
ρ(E)DE

∂

∂E

ν(E, t)
ρ(E)

]
−
∫
ρ(E)DE

∂

∂E

ν(E, t)
ρ(E)

dE. (3.37)

We need to have ν(E, t) integrable (i.e.
∫
v(E, t)dE = N the number of particles in the

system): at the boundaries of E ν(E, t) = 0, and thus the first term in the integration

is zero. We will also assume that ρ(E) is weakly changing (for example 2D quantum

dots), so

W = −
∫
DE ρ(E)

∂f(E)
∂E

dE. (3.38)

The above relation is known as dissipation-diffusion equation. If we further assume that

we are discussing a fermionic system, we can further substitute ∂f
∂E = −δ(E −EF ), and

W can be written as

W = DEF
ρ(EF ) =

1
2
ρ(EF ) C̃(0) Φ̇2, (3.39)

if we use the fluctuation-diffusion relation derived in Appendix B. According to Joule’s

Law, the energy dissipation rate is W = GΦ̇2, where G is the conductance of the ring.

Hence we obtain the conductance to be

G =
1
2
ρ(EF ) C̃(0). (3.40)

The above approach allows us to consider situations where LRT does not apply. In such

cases we may get some (non-perturbative) results for the diffusion, and later use the

diffusion-dissipation relation in order to calculate the dissipation rate.

3.4 Thouless Conductance

Another widely used expression for the conductance was derived by Thouless. The main

point of his argument was based on the observation that the levels of a closed sample
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will respond in different ways under perturbation, depending on whether the system is

in the localized or metallic regime. In this Section we present the argument of Thouless,

using a mesoscopic ring in the presence of a magnetic flux as an example. We consider a

ring with circumference L under an external magnetic flux Φ. As we work in the linear

response regime, we can consider Φ to be small. We define the phase shift ϕ = (e/~)Φ.

The Hamiltonian of an electron moving in the ring is

H =
1

2m

(
p− eΦ

L

)2

+ V (x)

=
p2

2m
+ V (x)− eΦ

mL
p+

e2Φ2

2mL2

≈ H0 −
eΦ
mL

p = H0 −
~ϕ
mL

p (3.41)

where H0 is the Hamiltonian when there is no flux, and we can omit the Φ2 term.

The first-order energy shift is given by the perturbation theory E
(1)
β = −~ϕ

L 〈β|p|β〉,

but as the momentum operator matrix has zero diagonal elements, E(1)
β = 0. The

second-order energy shift is given by

E
(2)
β =

(
~ϕ
mL

)2 ∑
α 6=β

|〈α|p|β〉|2

E
(0)
β − E

(0)
α

. (3.42)

The energy levels E(ϕ) can also be written as a Taylor expansion around ϕ = 0: E(ϕ) =

E(0)+E′(0)ϕ+E′′(0)ϕ
2

2 +. . .. By equating the quadratic term with 3.42 we obtain

E′′
β(0) = 2

~2

m2L2

∑
α 6=β

|〈α|p|β〉|2

E
(0)
β − E

(0)
α

. (3.43)

Assuming now that the sum
∑ 1

E
(0)
β −E(0)

α

is dominated by the smallest E(0)
β −E(0)

α which

is of order ∼ ∆ and replacing |〈α|p|β〉|2 by its characteristic value |p|2, we obtain

|E′′
β(0)| ∼ ~2

m2L2
|p|2ρ. (3.44)

The Thouless energy ET is defined as ET ≡ |E′′(0)|. Using Kubo-Greenwood formula

of Eq. 3.34, the conductance can be written as

G ∼ e2

~
ET
∆
. (3.45)
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This relation was derived for the first time by Thouless [31, 32], and it shows the de-

pendence of conductance on mean level spacing, and the sensitivity to the changes in

energy eigenvalues due to perturbations.

3.5 Landauer Conductance

Landauer’s approach assumes that the mesoscopic sample is attached to leads, and em-

ploys the scattering matrix formalism. Economou and Soukoulis showed that under

appropriate circumstances it is equivalent to the Kubo-Greenwood results for conduc-

tance [33]. Specifically, in contrast to the Kubo formalism it addresses only the DC

response and cannot incorporate leadless geometries. Nevertheless, during the last 25

years this method has received much attention and many interesting results were derived

using this approach. Below we review the main ideas underlying this method.

Landauer first developed this formulation for one-dimensional systems. Let us assume

a system with transmission coefficient T and reflection coefficient R = 1 − T . The

system is connected by perfectly conducting wires to some external current source I.

The conductance is defined as I/V , where V is the voltage across the conductor, and

can be written [34,35] as

G =
e2

π~
T

(1− T )
. (3.46)

Clearly, this first result of Landauer was problematic since in the limit of a perfect

conductor T → 1 it gives G→∞.

Economou and Soukolis corrected Landauer’s formulation using the Kubo formalism

and obtained the conductance [33,36] as

Gc =
e2

π~
T. (3.47)

Unlike Eq. 3.46, Gc in Eq. 3.47 has a finite value for all possible values of T , and Gc < G,

except when T = 0.
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Figure 3.1: Geometry used in the Landauer conductance formulation: a system of scatterers

connected to a pair of reservoirs. µA and µB are the chemical potentials of the ends of the

scatterer, and µ1 and µ2 are the chemical potentials of the baths. Figure from [37].

Another way to view the difference between the two formulations is described in [37].

Consider a scatterer system connected to two reservoirs, one at each end, and the waves

are coming from the two reservoirs (see Fig. 3.1). Eq. 3.46 measures the conductance

between the two ends of the scatterer, which is given by G = I/(µA − µB), where µA

and µB are the chemical potentials of each end of the scatterer. Meanwhile, Eq. 3.47

measures the conductance between the two reservoirs, which have chemical potentials

µ1 and µ2, and the conductance is given by Gc = I/(µ1 − µ2).



Chapter 4

Mesoscopic Conductance of

Disordered Quasi-1d Rings

In this chapter we present a theoretical and numerical analysis [14,15] of the conductance

of mesoscopic rings using semilinear response theory (SLRT). We begin our presentation

by describing the physical system under consideration, and discuss the assumptions

underlying this study. Section 4.2 details the calculation method used to determine the

conductance, for semiclassical (Drude), LRT (Kubo), and SLRT methods. In Section

4.3 we focus on quasi-1d rings. Here we show the dependence of the conductance

on the disorder strength and compare the outcomes of SLRT with the results of the

traditional Kubo formalism. Following this, we build an analytical model to understand

the departure of SLRT results from LRT results in ballistic (weak disorder) and localized

(strong disorder) regimes. In Section 4.4 we introduce a random matrix theory (RMT)

model with log-box and log-normal distributed elements, based on the sparsity of the

numerical results, and a generalized variable range hopping (VRH) estimate of the

conductance, and discussing the applicability of these models by comparing them with

the numerical results. This chapter ends with the summary of our findings.

34
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4.1 Physical System and Modeling

A typical experiment that aims to measure the conductance of mesoscopic rings is

described in [4], where an ensemble of mesoscopic rings are placed under a perpendicular

(to the plane of the ring) time-dependent magnetic flux Φ. The induced (according to

Faraday’s law) electromotive force (EMF) −Φ̇ results in a current which, according to

Ohm’s law is I = −Gε (ε = Φ̇ is the voltage). The dissipated energy can either be

accumulated by the electrons (as kinetic energy), or it may be eventually transferred to

the lattice vibrations. In the latter case the ring is “heated”. The rate of heating (rate

of energy absorption) is given by Joule’s law

W = Gε2. (4.1)

where G is the “conductance” (inverse resistance) of the ring. This definition of con-

ductance was also used in [4, 38].

We will assume low frequency noisy driving with a power spectrum

F̃(ω) = ε2
1

2γbrd
exp

(
−~|ω|
γbrd

)
≡ ε2δγbrd

(~ω), (4.2)

where ε is the root-mean-square value of the voltage and γbrd is the broadening pa-

rameter of the spectrum. We want γbrd to be small enough compared to any relevant

semiclassical energy scale to avoid the semiclassical limit, but large enough compared

to the mean level spacing ∆ in order to avoid quantum recurrences that might appear

in strictly linear or periodic driving. Alternatively, if we use the assumption of an in-

teraction with the environment or an external thermal bath, we will get a similar result

and the parameter γbrd can be extracted from the level broadening or temperature of

the bath (see Section 3.2).

In “mesoscopic” circumstances, we assume that the coherence time of the system is

much longer than the ballistic time (the time required by waves to propagate through

the system), but shorter than the Heisenberg time (~/∆). We will also assume that the
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system can release energy to some external bath, resulting in a “heat flow” with rate Q,

governed by the relaxation rate γrlx towards the equilibrium. The system reaches steady

state when Q = W. The two energy scales γbrd and γrlx describe different physics. The

former is essential in order to analyze the induced FGR transitions between levels and

as such it directly affects the energy absorption rate W, while the latter is responsible

for achieving a steady state. The overall physical picture of the energy absorption is

shown by Fig. 4.1(a).

Let us assume that the ensemble of rings possesses broad thermal population of energy

levels. Some of the rings will have a higher absorption rate than others, depending

on the coupling strength of the initial level to its neighboring levels. The initial rate

of the energy absorption (per ring) is then obtained by a simple algebraic averaging

of the absorption rates of each individual ring 〈W〉. This algebraic averaging reflects

the statistical nature of the preparation and has nothing to do with the nature of the

dynamics [9].

Generally, when we measure the conductance we are not interested in the transient

behavior but in the long term behavior. The transient behavior is characterized by a

time scale tstbl. In [9] it is shown that tstbl depends on the EMF: tstbl decreases with

increasing ε. For t� tstbl the absorption rate depends on the probability to make long

sequences of transitions. In the long term behavior, the absorption will slow down and

the conductance will be smaller when compared with the initial conductance. If we take

the relaxation process into account, two possible scenarios are possible, as illustrated in

Fig. 4.1(b). The first possibility occurs when the relaxation is weak,

γ−1
rlx � tstbl/~, (4.3)

where the absorption will slow down as in the previous case. The other possibility

happens if we have relaxation that is strong enough to mask the intrinsic dynamics of

the system. This condition can also be achieved if ε is small such that Eq. 4.3 breaks

down. In this case, the relaxation process returns the level distribution to its initial
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state before the slow down can occur, and there is no drop in the conductance value [9].

Here we will assume the former case of weak relaxation, and we call the conductance

based on this assumption the mesoscopic conductance.

ε(t)

W(γ
brd

) Q (γ
rlx

)

(a)

t

W

(b)

Figure 4.1: The phenomenology of energy absorption in mesoscopic rings. In (a) we highlight

the energy processes in the ring: energy absorption W, which depends on the level broadening

parameter γbrd, and heat flow Q, which depends on the relaxation rate γrlx. In (b) we show how

W depends on time. If γrlx is small then there is a transient leading to a slower absorption rate

that depends on γbrd. Figure from [9].

Kubo conductivity, based on linear response theory (LRT) has been applied to diffusive

rings [5, 6], and in this case we get the Drude results. In Section 3.2 we show that

the Kubo conductance can be obtained by performing an algebraic averaging of the

perturbation matrix elements, which is proportional to the absorption rates between

levels. This result is to be expected since the underlying assumption of Kubo is that

the system is always near equilibrium.

Previous studies have focused on the corrections to the Kubo-Drude results due to weak

localization [7,8]. These corrections do not change the leading order of the Kubo-Drude

results, as they are only of the order ∆/γbrd. In the strong disorder limit there are

two conflicting results for the γbrd dependence of conductance, both based on Mott’s

work [39, 40]. On the basis of the Kubo formula, one expects G ∼ γ2
brd| log(γbrd)|d+1

where d=1 for quasi one-dimensional (quasi-1d) ring. While on the basis of the variable

range hopping (VRH) phenomenology, one expects G ∼ exp(−(γ0/γbrd)1/(d+1)), where

γ0 is a constant.
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Here, we will show that a novel unified framework termed semilinear response theory

(SLRT), originally introduced in [9] and further extended in [10], can be used to de-

scribe equivalently the ballistic (weak disorder), diffusive, and localized (strong disorder)

regimes. In the LRT limit, SLRT leads to LRT, while in general for mesoscopic con-

ditions SLRT can be approached as a resistor network hopping picture [11] in energy

space, which is a generalization of the real space hopping picture of [12,13].

We consider the case of a quasi-1d ring with circumference (number of nodes) L and

number of channels M . Each site in the ring has random potential given by a box

distribution of width w. The nearest neighbor coupling term in the longitudinal direction

is c|| = 1, while in the transverse direction it is c⊥ = c < 1. We will also use natural

units such that ~ = 1 and the mass of the electron me = 1.

As we have shown in Section 3.2, the perturbation operator associated with the per-

pendicular magnetic field is the current operator I, which is proportional to the ve-

locity operator v̂. For thin rings, we can write the corresponding velocity operator

v̂ = −(i~/m)(∂/∂x) in the Wannier basis

v1D =
i~

2me



0 −1 0 0 · · · 1

1 0 −1 0

0 1 0 −1
...

0 0 1 0
...

. . .

−1 · · · 0


. (4.4)

For a quasi-1d ring system, assuming current only flows in longitudinal direction, the

current matrix in position basis can be written as an M×M matrix with L×L matrices
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as matrix elements

vquasi-1D =



v1D 0 0 · · · 0

0 v1D 0

0 0 v1D
...

...
. . .

0 · · · v1D


. (4.5)

In our simulations, we compute the scaled conductance defined as

G̃ =
G

(e2/2π~)M
. (4.6)

In the case of systems with open (Landauer) geometries, G̃ is the average transmission

per channel. For closed (ring) geometries, G̃ depends on the structure and the sparsity

of the perturbation matrix.

4.1.1 Drude Conductance

Drude conductance of the ring can be obtained from the single-channel results of Section

3.1 by applying them to a multichannel system. In the case of one dimensional systems,

using Green’s function formalism one can find the relation between mean free path lm

and localization length l∞ [20] to be

l∞ = 4lm. (4.7)

For quasi-1d systems, we have l∞ ∼ Mlm (see section 2.4). If we apply these relations

to Eq. 3.7 we obtain the Drude conductance

GDrude =
e2

2π~
M
lm
L
. (4.8)

Here the Drude scaled conductance G̃Drude is just the ratio between the mean free path

and the circumference of the ring.
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From Subsection 2.3.3 we find that the localization length of a 1d system, and hence

also the mean free path, is approximately proportional to (4 − E2)/w2. For periodic

lattices E = 2 cos k, where k is the wavenumber, and so lm ∼ [2 sin k/w]2. The velocity

of the electrons at the Fermi level is given by vF = ∂E/∂k|E=EF
= 2 sin k. The mean

free path is then

lm ∼
(vF
w

)2
. (4.9)

We can write the total number of states N in terms of energy E as

N =
ML

π~
√

2mE, (4.10)

where in our case, the volume of the system is ML. The density of states can be

obtained by taking the derivative

ρ(E) =
dN

dE
=
ML

π~

√
m

2E
=

ML

π~ v(E)
. (4.11)

The density of states is equivalent to the inverse of the spacing between energy levels

∆. At the Fermi level, the density of states is then

ρF = ρ(EF ) =
ML

π~vF
≡ 1

∆
. (4.12)

By applying Eq. 4.9 and Eq. 4.12 to Eq. 4.8, we obtain the expression for the scaled

conductance

G̃Drude ∼
M2L∆2

π2~2w2
. (4.13)

4.1.2 Drude-Kubo Conductance

The Diffusion-Dissipation Relation derived in Section 3.3 gives

G =
1
2
ρ(EF ) C̃(0). (4.14)

We can obtain the Drude conductance of the previous subsection by using the following

classical approximation

C(t) =
( e
L

)2
〈 v(t) v(0) 〉 ≈

( e
L

)2
v2
F exp

[
−2

vF
lm
|t|
]
, (4.15)
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and applying the Fourier transform of the above equation to Eq. 4.14.

On the other hand, if we take quantum effects into account, by substituting C̃(ω) from

Appendix C and the broadened delta δγbrd
to Eq. 4.14 we obtain

GKubo = π~
( e
L

)2
ρF

1
N

∑
n,m

|vnm|2δγbrd
(Em − En)

≡ π~
( e
L

)2
ρ2
F 〈〈|vnm|2〉〉, (4.16)

where the average is over N nearby open mode states within a chosen energy win-

dow.

The spectral function C̃(ω) is the Fourier transform of the current-current correlation

function, and can be re-interpreted as the band profile of the perturbation matrix in

the eigenvalue basis. The weak localization corrections are determined by the interplay

of the broadened delta function with the level statistics. One important thing to note

is that 〈〈. . .〉〉LRT in Eq. 4.16 is a simple algebraic average over nearby diagonal matrix

elements within the chosen energy window.

The scaled conductance is then

G̃Kubo = 2π2~2 1
ML2

1
N∆

∑
n,m

|vnm|2δγbrd
(Em − En). (4.17)

4.1.3 SLRT: Mesoscopic Conductance

Similar to the derivation of Kubo conductance, also in the SLRT we use the assumption

that the energy absorption is dominated by FGR transitions. As shown before, the

transition rate in FGR transitions is proportional to the squared matrix element |vnm|2

of the velocity operator. Because the absorption rate highly depends on the probabil-

ity to make connected transitions, SLRT [9] does not directly lead to Kubo formula.

Both the structure and the sparsity of the |vnm|2 matrix have significant effects on the

conductance G. The main outcome of SLRT is that the conductance formula can be
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written in the form of Eq. 4.16, where we have the scaled conductance

G̃ =
2M
v2
F

〈〈|vnm|2〉〉, (4.18)

but with a modified definition of 〈〈. . .〉〉—which is now not an averaging but something

different based on resistor network picture calculation. It was shown in [9, 41] that

〈〈. . .〉〉 is bounded from above by algebraic averaging 〈X〉, and from below by harmonic

averaging 〈X−1〉−1. In the remaining part of this subsection we will describe the details

of SLRT conductance calculations.

We again consider the Hamiltonian of a ring system under magnetic flux, introduced in

Section 3.3, H = H + ΦI. To calculate the mesoscopic conductance (Eq. 4.18), we will

work in the adiabatic basis, where the basis vectors are the instantaneous eigenvectors

of the Hamiltonian H. The Hamiltonian matrix elements can be written in the adiabatic

basis (see Appendix D for derivation) as

Hnm = Enδnm + Φ̇Vnm. (4.19)

where En are the instantaneous eigenvalues and

Vnm = i~
Inm

(En − Em)
. (4.20)

We can write the FGR transition probability from states |n〉 to |m〉 as (see [27,28])

Wnm =
∣∣∣∣− i~

∫ +∞

−∞
dt′ eiωnmt′〈n|Φ̇V |m〉

∣∣∣∣2 . (4.21)

Then we can write the rate of energy absorption between the same states as

Γn,m =
2π
~
ρ|Vnm|2Φ̇2. (4.22)

The transition can only occur when the energy absorbed equals the energy difference

between the two states, so we can approximate the density of state as a delta function

peaked at the energy difference, ρ ≈ δγbrd
(Em − En).



Chapter 4. Mesoscopic Conductance of Disordered Quasi-1d Rings 43

The energy absorption rate from the FGR transition between states |n〉 and |m〉 of

Eq. 4.22 (based on Joule’s Law) equals GnmΦ̇2, where Gnm is the conductance (inverse

resistance) between the two states

Gnm =
2π
~
|Vnm|2δ(En − Em) = 2π~

( e
L

)2 |vnm|2

(En − Em)2
δ(En − Em). (4.23)

Instead of Gnm, we will work with the scaled conductivity between two states gnm,

defined as

gnm = 2∆3 |vnm|2

(En − Em)2
δ(En − Em), (4.24)

related to Gnm as

Gnm =
π~
∆3

( e
L

)2
gnm. (4.25)

Figure 4.2: Illustration of resistor network picture in energy space. The resistance of a ”re-

sistor” connecting states n and m corresponds to g−1
nm. The right side of the image shows a

truncated segment of the network, with current J goes into one end and the same current J

exits another end, while the net current in other sites is zero. Figure from [41].

The following method is adapted from [41]. We consider a resistor network of N sites

in the energy space. We assume that current with strength J goes into one end (we

use the state with the lowest energy), and the same current strength J exits another

end (we use the state with the highest energy), and in the remaining sites there is zero

net current. Hence we can represent the injected current in the network as a vector

J = (J1, J2, . . . , JN ), with all zero elements except J1 = +J and JN = −J .
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We can then use Kirchoff’s laws to relate the current and potential in the network

Jn =
∑
m

gnm(Vm − Vn) =

(∑
m

gnmVm

)
−

(∑
m

gnm

)
Vn, (4.26)

where Vn is the potential of site n. For all N sites, Eq. 4.26 can be represented as a

matrix multiplication

J = g′V , (4.27)

where V = (V1, V2, . . . , VN ) and g′ has matrix elements

g′nm = gnm −

(∑
k

gkm

)
δnm. (4.28)

Using Eq. 4.27, we find

V = (g′)−1J . (4.29)

The conductance of the whole resistor network is

gN =
J

VN − V1
. (4.30)

We then define the conductance of the ring as g = NgN .

The mesoscopic conductance Gmeso can be written as

Gmeso =
π~
∆3

( e
L

)2
g =

π~
∆3

( e
L

)2 NJ

(VN − V1)
, (4.31)

and the scaled conductance G̃meso can be written as

G̃meso = 2π2~2 1
ML2

1
∆3

(
NJ

VN − V1

)
. (4.32)

4.2 Numerical Results and Analysis

For a quasi-1d ring of L = 500 and M = 10, the plots of scaled conductances G̃Drude

(Eq. 4.13), G̃Kubo (Eq. 4.17), and G̃meso (Eq. 4.32) are shown in Fig. 4.3. We observe

departure of the SLRT conductance (G̃meso) results from Drude-Kubo results in the

weak disorder (ballistic) and strong disorder (localized) regimes.
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Figure 4.3: Scaled conductances G̃Drude, G̃Kubo, G̃meso versus disorder strength w for a quasi-1d

ring with L = 500 and M = 10, transverse nearest neighbor interaction c = 0.9, and broadening

parameter γbrd/∆ = 7. Figure from [14].

In order to determine numerically whether the structure of the matrix is of any impor-

tance, we permute randomly the elements of the vnm matrix along the diagonals (the

“untextured” matrix) and recalculate G̃. By definition, GKubo is not affected by this

procedure. We find that Gmeso is slightly affected by this in the ballistic regime, but the

qualitative results are generally the same. Accordingly, we deduce that the main issue

is the sparsity, and concentrate below on the RMT modeling of sparsity.

In the rest of this section, we will construct an analytical model of the ring that will help

us to understand the numerical results. We will start with the discussion of the diffusive

regime, where LRT, SLRT, and also semiclassical approximations are all in agreement.

Then we will continue with the discussion of the ballistic and localized regimes, where

we observe departures (see Fig. 4.3) of the SLRT results from the LRT results. The

departures correspond to the non-ergodicity of the wavefunctions.
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4.2.1 Diffusive Regime: Random Waves Conjecture

In the diffusive regime, Mott has argued that the eigenstates of the Hamiltonian matrix

are ergodic in position space, and look like random waves [39, 40]. Using this assump-

tion one can reconstruct the Drude result. Following Mott, we assume that lm is the

correlation scale of any typical wavefunction Ψ(x, y). The total volume Ld is divided

into domains of size ldm, and hence we have (L/lm)d such domains.

Next we will consider the quasi-1d case where d = 1. Using the definition of the velocity

operator, the velocity matrix elements can be written as the integral

vnm = 〈n|v|m〉 =
~
ime

∫
dxψ∗n(x)

d

dx
ψm(x), (4.33)

where ψn(x) is the wavefunction of state |n〉 in real space. If we use Mott’s assump-

tion, the integral can be written as separate integrals for each domain, and Eq. 4.33

becomes

vnm =
~
ime

L/lm∑
a

∫
la

dxψ∗n(x)
d

dx
ψm(x), (4.34)

where la is the integration path within a domain a. The perturbation matrix elements

|vnm|2 are then given by

|vnm|2 =

∣∣∣∣∣∣ ~
ime

L/lm∑
a

∫
la

dxψ∗n(x)
d

dx
ψm(x)

∣∣∣∣∣∣
2

=
(

~
me

)2
∣∣∣∣∣∣
L/lm∑
a

Ia(la)

∣∣∣∣∣∣
2

, (4.35)

where we have defined

Ia(la) ≡
∫
la

dxψ∗n(x)
d

dx
ψm(x). (4.36)

The sum term in Eq. 4.35 can be written as∣∣∣∣∣∣
L/lm∑
a

Ia(la)

∣∣∣∣∣∣
2

=
L/lm∑
a

|Ia(la)|2 + cross terms. (4.37)

If we average over different disorder realizations, due to uncorrelated velocities the cross

terms will go to zero. Assuming further that Ia(la) ≈ I we finally get the following
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expression for the velocity matrix elements

|vnm|2 =
(

~
me

)2

|I|2 L
lm
. (4.38)

Mott uses the assumption that locally the eigenstates are similar to free waves, and

hence ψ(x) ≈ exp(ikx). We can then evaluate I,

Ia(la) ≈
∫
la

dx exp(−iknx)
d

dx
exp(ikmx)

= ikm

∫
la

dx exp[−i(kn − km)x]

≈ ikF |ψ|2 lm, (4.39)

since the electrons are near the Fermi level and we integrate over a domain of size lm. If

we assume ergodicity of the wavefunctions, |ψ|2 = 1/L from the normalization condition

over the whole volume. Hence

|vnm|2 =
(

~
me

)2

k2
F (|ψ|2lm)2

L

lm
= v2

F

lm
L
. (4.40)

From here, we get G̃ ∼ lm/L, which leads to the Drude result. We will discuss the

limited validity of this result in the next subsection.

4.2.2 Non-Ergodicity of Wavefunctions

It is clear that Mott’s derivation of the Drude formula on the basis of LRT and the

random waves conjecture becomes non-applicable if the eigenfunctions are non-ergodic.

This is indeed the case for both weak and strong disorder: a typical eigenfunction does

not fill the whole accessible phase space. In the ballistic case a typical eigenfunction is

not ergodic over the open modes in momentum space, while in the strong localization

regime it is not ergodic over the ring in real space [42]. We can demonstrate this point

by plotting the participation ratio for various space representations as a function of the

disorder strength. Participation ratio is defined as

PR ≡ [
∑

P2]−1, (4.41)
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Figure 4.4: Participation ratio, defined as PR ≡ [
∑
P2]−1, as a characterization of ergodicity,

versus disorder w, in various space representations. Figure from [14].

where P, which is the wavefunction density, depends on the space representation. Next

we define the coordinates of a site in real space, with r|| for longitudinal direction and r⊥

for transverse direction. In position space P is the probability to be at site (r||, r⊥)

Pr||,r⊥ = |〈r||, r⊥|Ψ〉|2. (4.42)

In mode space P is the probability to be at mode k⊥ = mπ/(M + 1) where m integer,

and can be written as

Pk⊥ =
∑
r||

|〈r||, k⊥|Ψ〉|2, (4.43)

where

〈r||, k⊥|Ψ〉 =
∑
r⊥

〈r||, r⊥|Ψ〉 exp(ik⊥r⊥). (4.44)

In Fig. 4.4 we see that, as we expected, the participation ratio for mode (momentum)

space is smallest in the ballistic regime, and the participation ratio for position space is

smallest in the localized regime. This result is in agreement with our intuition: in the

ballistic regime due to the lack of scattering events the wavefunction does not spread
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over the whole number of accessible modes, while in the localized regime, Anderson

localization prevails leading to exponentially localized wavefunction in real space.

We can also describe the overall ergodicity for both spaces using the participation ratio

in the hybrid mode-position space where

Pr||,k⊥ = |〈r||, k⊥|Ψ〉|2. (4.45)

From Fig. 4.4 we see that the value of participation ratio in this hybrid space is highest

in the diffusive regime. In the ballistic limit, it approximately goes to the number of

sites L, indicating the eigenfunctions are ergodic only in position space but not in mode

space. In the localized limit, it approximately goes to the number of modes M , which

means the eigenfunctions are ergodic only in mode space, not in position space.

4.2.3 Structural Analysis of the Perturbation Operator

Lack of quantum ergodicity for either weak or strong disorder implies that the pertur-

bation matrix vnm is very structured and/or sparse [43]. We show this in Fig. 4.5,

where in the weak disorder regime the perturbation matrix is structured and sparse,

and in strong disorder regime it is very sparse. In the strong disorder case the sparsity

is clearer to understand: Eigenstates that are close in energy space are typically distant

in real space, and therefore have very small overlap. The large matrix elements comes

from the contribution of the eigenstates that reside within the same region in real space,

hence the sparsity.

For analytical purposes a better mathematical formulation for this sparsity is required.

One can define a sparsity measure p as the fraction of non-zero elements. A matrix

is regarded to be sparse if p � 1. Such a definition assumes a bimodal distribution

of matrix elements (Fig. 4.6). For a matrix with a bimodal distribution of elements,

sparsity measure p, and X0 as the value of all non-zero elements, we can easily calculate

the average value of the matrix elements to be 〈X〉 = pX0. However, in general we do
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Figure 4.5: Perturbation matrix |vnm|2 for various disorder values w. Each plot represents a

different regime.
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matrix elements X = |vnm|2. In the case of this figure we have 〈X〉 = pX0. Figure from [15].

not find such idealized matrices in nature. After contemplating on this issue, one can

conclude that the physically generalized definition of the sparsity measure is p ≡ F (〈X〉).

Here F (X) is the probability to find a value larger than X, which is equivalent to the

cumulative distribution of matrix elements of {X}, integrated from above.

4.3 Random Matrix Theory Modeling

In this section we introduce a modeling scheme of artificial matrices using RMT that

can represent our numerical findings. We need to utilize the appropriate distribution

of matrix elements, based on the numerical results. In Fig. 4.7 we plot the cumulative

distribution F (X) for various disorder values from our numerics, and for strong disorder

we observe a log-box distribution. In the following subsection we build an analytical

reasoning for this type of distribution.
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4.3.1 Log-Box Distribution of Matrix Elements

Given that a generic eigenfunction in the localized regime has an exponential shape

ψ(r) ≈ exp(−|r − r0|/l∞), we conclude that a typical matrix element of |vnm|2 has the

magnitude

X ≈ A exp
(
− x

l∞

)
(4.46)

where x ∈ [0, L/2] has a uniform distribution. Here we define a new variable y ≡ x/l∞,

and the above equation becomes

X ≈ A exp(−y), (4.47)

and y ∈ [y0 = 0, y1 = L/(2l∞)]. Note that in the localized regime y1 � 1. As y has a

uniform distribution P (y), from normalization
∫ y1
y0
P (y) dy = 1 we have P (y) = 1/(y1−

y0). We can then find the distribution of X, P (X), by having P (X) dX = P (Y ) dy,

and we obtain

P (X) =
1
X

1
y1 − y0

, (4.48)
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where X ∈ [X1 = A exp(−y1), X0 = A]. The mean value of X is then

〈X〉 =
∫ X0

X1

X P (X) dX =
1

(y1 − y0)

∫ X0

X1

dX

=
X0 −X1

y1 − y0
≈ 2Al∞

L
(4.49)

in the localized regime. The above equation can also be written as

〈X〉 =
X0 −X1

ln(X0)− ln(X1)
=

X0 −X1

ln(X0/X1)
. (4.50)

The prefactor A can be determined from the requirement of having G̃ ≈ lm/L, in

agreement with the semiclassical result. By substituting Eq. 4.50 into Eq. 4.18 we have

A ∼ (vF /M)2.

Using the result for P (X), we can then determine the sparsity measure p

p = F (〈X〉) =
∫ X0

〈X〉
P (X) dX =

1
(y1 − y0)

∫ X0

〈X〉

dX

X

=
ln(X0)− ln(〈X〉)

y1 − y0
=

ln(X0/〈X〉)
ln(X0/X1)

. (4.51)

If we substitute Eq. 4.50 into the above equation, the sparsity can be written as

p =
ln
(
X0[ln(X0/X1)]

X0−X1

)
ln(X0/X1)

. (4.52)

We define p̃ ≡ [ln(X1/X0)]−1, and assuming X0 � X1 we find

p ≈ −p̃ ln p̃. (4.53)

By substituting the above equation into Eq. 4.50 (assuming X0 � X1) we obtain 〈X〉 ≈

p̃X0. Hence for a log-box distribution 〈X〉 ∼ pX0, as expected from the standard

bimodal case.

4.3.2 Modeling Results

In Fig. 4.9 we repeat the conductance calculation with artificial matrices given the

same sparsity, i.e. log-box distributed elements with the same p (see Fig. 4.8) . We
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We compare with the results from the “untextured” matrices and artificial RMT modeling using

sparse matrices with log-normal or log-box distribution of matrix elements. For weak disorder

there is only a qualitative agreement, indicating the structure of the perturbation matrix becomes

important. Figure from [14].
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observe qualitative agreement for strong disorder limit. In the other extreme limit of

weak disorder there is no agreement, because we need to use a different distribution

of the matrix elements. It turns out that in the ballistic regime logX has a wide

distribution, but it is not stretched as in the case of a log-box distribution. Rather,

it can be modeled as log-normal. Once we use the appropriate distribution we get a

reasonable agreement.

4.3.3 Generalized Variable Range Hopping Picture

Given a hopping range |Em−En| ≤ ~ω we can look for the typical matrix element X for

connected sequences of such transitions, which we find by solving the equation(
~ω
∆

)
F
(
X
)
∼ 1. (4.54)

For strong disorder, using the value of F (X) from Eq. 4.51 we have

ln(X0/X)
ln(X0/X1)

∼ ∆
~ω

. (4.55)

Using the values X0 = (vF /M)2 and X1 = (vF /M)2 exp(−L/2l∞) from Subsection 4.3.1

we obtain

X ∼ v2
F exp

(
−∆l∞

~ω

)
, (4.56)

where we define ∆l∞ ≡ (L/l∞)∆, which is the local level spacing between eigenstates

localized in the same region. The same procedure can be applied also in the ballistic

regime leading to a simpler variation of Eq. 4.56, where the dependence of X̄ on ω

predominantly reflects the band profile: It follows from the discussion in Subsection

4.1.2 that vnm is a banded matrix, with a Lorentzian bandprofile whose width ∼ vF /lm

becomes narrower as disorder is decreased.

The definition of the bandprofile reflects the variation of 〈X〉 with ω. In complete

analogy we define an effective bandprofile that reflects the variation of X with ω.
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Namely

C̃qm-LRT(ω) ≡ 2πρF
( e
L

)2
〈X〉 (4.57)

C̃qm-SLRT(ω) ≡ 2πρF
( e
L

)2
X (4.58)

The spectral function in Appendix C is a smeared version of the “bare” spectral function:

it is obtained by a convolution C̃qm-LRT(ω) ∗ δγbrd
(ω). More generally we argue that the

generalized version of Eq.4.16 is

G =
1
2

( e
L

)2
ρF

∫
C̃qm(ω) δγbrd

(ω)dω (4.59)

where the appropriate LRT/SLRT spectral function should be used. This way of

writing allows one to obtain an approximation for the mesoscopic conductance us-

ing a Kubo-like calculation. In particular for strong disorder we get an integral over

exp(−~|ω|/γbrd) exp(−∆l∞/~|ω|), as expected from the VRH phenomenology. In the

weak disorder regime the VRH integral is not the same because a log-normal rather

than log-box distribution is involved. We have verified that the generalized VRH inte-

gral gives a qualitative approximation to the actual resistor network calculation.

4.4 Summary

Within the framework of SLRT we use the assumption that the transitions between

levels are given by Fermi Golden Rule, but the energy absorption rate is determined

using a resistor network picture. The calculation method used is similar to the method

used in solving a percolation problem, but the percolation is in energy space rather than

real space. The calculation generalizes the variable range hopping picture and treats

equivalently the weak and strong disorder regimes. Appropriate distribution for the

elements of the perturbation matrix (either log-box or log-normal) should be assumed

within the RMT framework.
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A recent study [44] has attempted to go beyond the FGR approximation. If its results

could be extended beyond the diffusive regime, it is possible to extend SLRT into the

non-linear regime.

A few words are in order regarding the implicit role of the environmentally induced

relaxation process that determines the steady state of the system. Within SLRT one

assumes that the FGR rate of the driven transitions (ΓFGR ∝ ε2gnm) is large compared

to the relaxation rate γrlx. The inelastic relaxation effect can be incorporated into the

SLRT framework by considering a non-symmetric gnm as implied, perhaps by detailed

balance considerations. If the relaxation process is the predominant effect (ΓFGR < γrlx)

then we are back in the LRT regime [45] where the Kubo-Drude result applies [9].

If the mean free path becomes smaller than the length of the ring, then the scaled

conductance G̃ is simply identified as the average transmission per channel as in the

theory of Landauer [46].



Chapter 5

SLRT for Systems at

Metal-Insulator Transition:

Preliminary Results

In this chapter, we apply SLRT to the Harper model. This is a prototype solid-state

model which allows us to discuss the Metal-Insulator transition in one-dimension, thus

bypassing the numerical deficiencies appearing in higher-dimensional systems due to

memory restrictions. Although this is a work in progress [16], we feel that it makes

sense for the completeness of this Thesis to include this chapter. In section 5.1 we

introduce the model, then discuss the idea of criticality in the model. Section 5.2

presents the results for conductance based on the Landauer approach. In section 5.3

we present the numerical results of SLRT conductance for a Harper ring model and

compare them with the results of the Drude and Kubo formalisms. Section 5.4 deals

with the fractal structures of the eigenstates and how it affects the structures of the

perturbation matrix. We end this chapter by summarizing our findings thus far.

58
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5.1 Harper Model and Criticality

The on-site potential that characterizes the Harper model has the form εn = 2λ cos(2πσn+

θ), where θ is a random phase that will allow us later on to perform statistical averaging.

The tight-binding equation becomes

V (cn+1 + cn−1) + λ cos(2πσn+ θ) cn = E cn. (5.1)

This type of model was first studied by Harper [47]. If σ is an irrational number, the

periodicity of the potential (σ−1) is irrational with respect to the periodicity of the

lattice (hence it is “quasiperiodic”). In this respect, the Harper model shows properties

between those of a periodic and a random potential.

To identify the value of λ for which the phase transition takes place in the Harper model,

we will follow the method of [48, 49]. We consider a Harper model with infinite sites

and irrational σ. We want to write the simultaneous equations of Eq. 5.1 in reciprocal

lattice representation. If fm is the projection of the wavefunction at m-th reciprocal

lattice site, we can relate cn’s and fm’s using the following transformation

cn = exp(inα)
+∞∑

m=−∞
exp[im(2πσn+ θ)] fm, (5.2)

where α is a phase. Applying this to Eq. 5.1, and then grouping the terms which have

the same exponential terms, results in the following equation in the reciprocal lattice

space
λ

2
(fm−1 + fm+1) + 2V cos(2πσm+ α) = E fm. (5.3)

If λ = 2V , Eq. 5.3 has the same form as Eq. 5.1. If the eigenstates are localized (and

hence normalizable) in reciprocal space, the sum
∑

m |fm|2 is finite. Based on this

result, Eq. 5.2 has a converging sum term, and satisfies Bloch’s theorem. Hence the

eigenstates are extended in real space, which is the metal state. Using a symmetry

condition between Eq. 5.1 and Eq. 5.3, we can also show that when the eigenstates are

localized in real space (insulator state), they are extended in reciprocal space.
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When the eigenstates are localized, we can write an expression of the localization length

using the Thouless relation of Subsection 2.3.2. In real space the inverse localization

length is given by

l−1
1 (E) =

∫
dE′ ln

∣∣∣∣E − E′

V

∣∣∣∣ ρ(E′), (5.4)

and in reciprocal space it is

l−1
2 (E) =

∫
dE′ ln

∣∣∣∣2(E − E′)
λ

∣∣∣∣ ρ(E′). (5.5)

The two localization lengths are related by

l−1
1 (E) = l−1

2 (E) + ln(λ/2V ). (5.6)

When the eigenstates are localized, the localization length has to be a positive num-

ber. Using the condition obtained in the previous paragraph, when the eigenstates are

localized in real space, they are extended in reciprocal space (l2(E) →∞) and

l−1
1 (E) = ln(λ/2V ) > 0, (5.7)

which means λ > 2V . Conversely, if the eigenstates are extended in real space (l1(E) →

∞), they are localized in reciprocal space and

l−1
2 (E) = ln(2V/λ) > 0, (5.8)

which means λ < 2V . We thus conclude that the transition between localized and

extended states occurs when λ = 2V . At this point, the wavefunction possesses a

fractal structure.

The fractal nature of the wavefunctions can be shown using a phase space representation.

Due to Heisenberg’s uncertainty principle, it is hard to define phase space of a quantum

state where we have perfect localization in position or momentum space [50]. One way

to represent the phase space of a quantum state with a wavefunction ψ(x) is by using

the Husimi function [51], which is a Gaussian smearing of the Wigner function

W (x, k) =
∫
dy exp(iky)ψ∗

(
x+

y

2

)
ψ
(
x− y

2

)
, (5.9)
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where k is the wave number. The Husimi function itself can be written as

%(x, k) =
1
π

∫
dx′ dk′ exp

[
−(x− x′)2

2σ2
%

− 2σ2
%(k − k′)2

]
W (x′, k′), (5.10)

where σ% is the smearing width of the Husimi function. By substituting Eq. 5.9 to Eq.

5.10, we obtain

%(x, k) =
∣∣∣∣∫ dx′ ψ(x′)

1
(2πσ%)1/4

exp
[
−(x− x′)2

4σ2
%

− ikx′
]∣∣∣∣2 . (5.11)

σ% is essentially a free parameter, but in our calculations we adopt the suggestion of [50]:

an equal relative uncertainty in position and momentum space (∆x/L = ∆k/2π), and

minimal uncertainty based on Heisenberg’s uncertainty principle (∆x∆k = 1/2). Using

these two conditions we have σ% = ∆x =
√
L/4π.

In Fig. 5.1 we plot the Husimi function for the Harper model with size L = 377 and

σ = (
√

5− 1)/2 for an eigenstate near the band center. Since we have a discrete lattice,

so the integral in Eq. 5.11 becomes a sum over x′, and we discretize the momentum

space as well. As the Husimi function is symmetric, %(x,−k) = %(x, k), it is enough to

plot only the upper half of the phase space where k ∈ [0, π]. In the extended regime,

the Husimi function is localized in momentum space and extended in position space

(see Fig. 5.1(a)). In the localized regime the Husimi function is localized in position

space and extended in momentum space (see Fig. 5.1(c)). These results agree with

the expectation of the structures of the wavefunctions from above. Meanwhile at the

critical point, a large part of the phase space is filled, suggesting a fractal behavior at

the critical point (see Fig. 5.1(b)).

In fact, not only the eigenstates of the Harper model are fractal, but also its spectrum

shows fractal properties. Specifically for σ irrational, the energy spectrum is a Cantor

set. In Fig. 5.2 we report the energy spectrum as a function of σ, the emerging structure

is known as the Hofstadter butterfly [52].
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Figure 5.1: Husimi functions for the Harper model with various values of potential strength

λ, for an eigenstate that is close to the band center and L = 377. Due to the symmetry of the

Husimi function %(x,−k) = %(x, k), it is enough to plot only the upper half of the phase space.
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Figure 5.2: Plot of the energy spectrum versus σ for the Harper model, more commonly known

as Hofstadter butterfly. This plot shows fractal structure in the energy spectrum of the Harper

model.

5.2 Landauer Picture at Critical Point

As shown in the previous chapter, in Landauer picture, the scaled conductance G̃ =

G(2π~/e2M) equals the average transmission T of the lattice. In the case of Harper

model with irrational σ and at critical point (λ = 2V ), Ref. [53] has calculated the

dependence of T on system size L using the transfer matrix method (see Subsection

2.1.2). The study found that T approximately follows a power law

T (L) ∝ L−γ , (5.12)

where the value of the exponent γ depends on σ, specifically its degree of irrationality.

We call this behavior the “generalized Ohm’s law.” In Fig. 5.3 we redo the calculation

for various values of σ. An ensemble average of the logarithm of transmission 〈lnT 〉 is

calculated by generating realizations of the Harper potential with a phase θ given by

a uniform distribution. For σ the inverse of the golden ratio (
√

5 − 1)/2 (red line in

Fig. 5.3), we have γ ≈ 1.0, and hence the Landauer conductance has a standard Ohmic

behavior (G ∝ 1/L).
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Figure 5.3: Natural logarithm of transmission coefficient T versus natural logarithm of system

size L for the Harper model with energy E = 0 and various values of σ: σ1 = (
√

2 − 1), where

γ > (black line); σ2 = (
√

5− 1)/2, where γ ≈ 1 (red line); and σ3 = (π − 3), where γ < 1 (blue

line). The dashed lines indicate the best linear fit of the data.

Here we used an averaging of 〈 lnT 〉θ instead of 〈T 〉θ as it was shown that the distribu-

tion of T is approximately log-normal, and logarithmic averaging is useful in reducing

the large fluctuations of T [53]. It was also found that logarithmic averaging over vari-

ous values of energy E gives approximately the same result as averaging over different

realizations of θ, provided E is far from the edges of the energy spectrum [53].

5.3 Application of SLRT: Numerical Results

For Harper ring model with σ = (
√

5−1)/2 and V = 1, the plots of scaled conductances

G̃Drude, G̃Kubo, and SLRT G̃meso as a function of potential strength λ are shown in

Fig. 5.4. At first observation it seems that the behavior of the SLRT conductance

and Kubo conductance are quite similar to the corresponding quasi-1d conductances:

SLRT conductance results approaches Kubo results near the critical point, while in the

extended and localized regimes, there is a departure of the SLRT results from the Kubo
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Figure 5.4: Scaled conductances G̃Drude, G̃Kubo, and G̃meso versus potential strength λ for the

Harper ring model with L = 1000 and σ = (
√

5 − 1)/2 and V = 1. The dashed vertical line is

the critical point λ = 2.

results. To explain the departure, we might be able to use the ergodicity argument that

was used in Chapter 4 as well.

We need to study more carefully the properties of the SLRT conductance at the critical

point λ = 2, and in the following we will focus on its scaling properties with respect

to the system size. The results of G̃meso are reported in Fig. 5.5 together with the

corresponding data for the G̃Drude and G̃Kubo for various system sizes L. It turns out

that the SLRT conductance has a different scaling behavior when compared to the

scaling behaviors of Drude and Kubo conductances. From the figure it is clear that

both G̃Drude and G̃Kubo follow Ohmic behavior γ = 1.0, in contrast to the SLRT G̃meso

for which we found that the best linear fit gives a power law exponent γ ≈ 1.7. Thus

G̃meso(L) < G̃Kubo(L). Although this finding is in line with our expectations that Gmeso

captures the long time dissipation rate which is dictated by bottlenecks in the energy

flow due to sparsity in the current matrix, a better numerical analysis is needed in order

to conclude on the power law behaviour of G̃meso.
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Figure 5.5: Scaled conductances G̃Drude, G̃Kubo, and G̃meso versus ring circumference L for

the Harper ring model with σ = (
√

5− 1)/2 at the critical point.

102 103 104

L

10-8

10-6

10-4

10-2

G

σ1

σ3

σ2

Figure 5.6: Scaled mesoscopic conductance G̃meso versus ring circumference L for the Harper

ring model for various values of σ. The σ values and the color coding are the same as in Fig.

5.3: σ1 = (
√

2− 1) (black line); σ2 = (
√

5− 1)/2 (red line); and σ3 = (π − 3) (blue line).
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If we vary the value of σ, we find that both Drude and Kubo conductances still follow

Ohmic behavior. In fact, this is to be expected for the semiclassical Drude results.

Meanwhile, for mesoscopic conductance, as shown in Fig. 5.6, the value of γ depends on

σ, but the dependence is different than σ dependence of Landauer conductance in the

previous section. This latter discrepancy is not surprising as the two quantities describe

different physical set-ups. We remind again that the Landauer conductance is dealing

with the transmission coefficient as it discuss the conductance of a sample coupled with

leads, while the SLRT analyzes the properties of an “absorption coefficient” due to noisy

driving. In fact, the different γ values that we are observing for various irrational σ’s

are directly related with the developed structures in the current matrix. For example,

more/less sparsity is determined by the level of fractality of the wavefunctions and affects

the transport since it will introduce more/less bottlenecks in the energy flow.

Naturally, as in the case of quasi-1d rings, we are interested to build an analytical model

that can explain the numerical results. The large discrepancy of the SLRT and LRT

results, at least at first glance, can be attributed to the structure and/or sparsity of

the perturbation matrix. We will expand this idea in the next section, where we try

to relate the structures of the perturbation matrix with the fractal properties of the

system at criticality.

5.4 Fractal Structures of Perturbation Matrix

As we discussed previously, at the critical point, the eigenstates and the spectrum pos-

sess fractal structures. We find that fractal structures are manifested in the perturbation

matrix as well. Fig. 5.7 shows this by displaying various cuts of the perturbation matrix

|vnm|2, where each consecutive matrix is a submatrix of the previous one. One can

see that the matrices possess similar structures, limited only by the discreteness of the

energy spectrum, which comes from the finite size of the ring.
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Figure 5.7: Different cuts of the perturbation matrix |vnm|2 for the Harper ring model with

L = 3200 and σ = (
√

5 − 1)/2, displaying self-similar structures. In (d) we take the natural

logarithm of the matrix elements of (a) to emphasize the structures of the matrix.



Chapter 5. SLRT for Systems at Metal-Insulator Transition: Preliminary Results 69

10
-9

10
-6

10
-3

10
0

X

10
-4

10
-3

10
-2

10
-1

10
0

F(
X

)

Figure 5.8: Cumulative distribution F (X) of perturbation matrix elements X = |vnm|2 for

the Harper model with L = 3200 and σ = (
√

5 − 1)/2. The tails of F (X) follows power law

F (X) ≈ X−α where α ≈ 0.54.

To analyze the fractal structure of the perturbation matrix further, in Fig. 5.8 we plot

the cumulative distribution of matrix elements F (X) for σ = (
√

5 − 1)/2, and we find

that the tail of the distribution follows a power law F (X) ≈ X−α, with a best fit giving

the power law exponent α ≈ 0.54. In fact, we can relate α and the fractal dimensions

of Harper model. We define the ratio

β ≡ Dµ
2

Dψ
2

, (5.13)

where Dµ
2 is the correlation dimension of the spectrum and Dψ

2 is the correlation dimen-

sion of the eigenfunctions. As shown in previous chapters, the Fermi Golden Rule (FGR)

transition rates, Γ, are proportional to the perturbation matrix elements |vnm|2 = X.

Γ is, by definition, the inverse of the lifetime tl of an initially excited state. For

a fractal system, the spreading of the variance of a wavepacket follows the relation

(∆x)2 ∼ t2β [54], and hence

∆x ∼ tβ ∼ 1
Γβ
. (5.14)

Furthermore, the spreading ∆x at t = t∗ corresponds to the number of states N that
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are affected by the excitation up to t∗, assuming an initial excitation at t = 0. These

states are the states that have lifetimes tl < t∗, or Γ > Γ∗ = 1/t∗. ∆x can then be

written as the expression

∆x ∼ N(Γ∗) ∼
∫ ∞

Γ∗
P (Γ) dΓ (5.15)

where P (Γ) is the distribution of Γ. As Γ ∼ X, the integral on the above equation is

just the cumulative distribution of matrix elements F (X), and the whole expression can

be rewritten as

F (X) ∼ X−β. (5.16)

Using this result we calculated β = α ≈ 0.54. This result is relatively close to the value

of β calculated using other methods [54], which found β ≈ 0.46. Based on this result, we

conclude that the self-similar structures of the perturbation matrix are indeed caused

by the fractal structures of the eigenfunctions and of the energy spectra.

5.5 Summary

For the Harper ring model, the mesoscopic conductance that is calculated using SLRT

has a large discrepancy with Kubo-Drude and Landauer results. We conjecture that

this is a result of the scale-free behavior of systems at a phase transition. We show that

the perturbation matrix actually possesses a self-similar structure, which can be traced

back to the fractal behaviour of the eigenstates and eigenvalues of the system. The

heuristic picture that we have in mind is as follows: The diffusion in energy space takes

place now in a fractal structure dictated by the current operator I (see Fig. 5.7). Thus,

the energy diffusion is anomalous resulting in a super-ohmic conductance law.

We hope that this work will pave the way to understand the behavior of the absorption

coefficient at Metal-Insulator transition. This theoretical understanding will find ap-

plications not only for the analysis of the Harper model but also to quantum Hall and

high dimensional disorder systems at the critical point.



Chapter 6

Summary and Perspectives

In this Thesis we applied semi-linear response theory (SLRT) to determine the conduc-

tance within two types of mesoscopic ring systems: the disordered quasi-1d ring and

Harper model.

For disordered quasi-1d rings, we studied the dependence of conductance on the dis-

order strength. We showed that while in the diffusive regime SLRT agrees with linear

response theory (LRT/Kubo) and semiclassical (Drude) approximations, in the ballistic

and localized regimes there are discrepancies between SLRT results and Drude-Kubo

results. We argued that these discrepancies come from the sparsity of the perturba-

tion matrix. The latter is associated with the fact that the wavefunctions in these two

regimes lose ergodicity (in mode and position space respectively). We then introduced a

random matrix theory (RMT) model based on the analysis of the statistical properties

of the current operator matrix elements, and proposed a generalization of the variable

range hopping (VRH) approach in order to estimate the conductance. We have dis-

cussed the applicability of these models by comparing them with the numerical results.

Both approximations showed qualitative agreement with SLRT, provided we used the

appropriate distribution of matrix elements in the appropriate regimes: log-normal for

weak disorder, and log-box for strong disorder.

71



Chapter 6. Summary and Perspectives 72

For the Harper model, we studied the dependence of conductance to system size at

the critical point. We have found that the mesoscopic conductance scales in a power

law manner, albeit with a different exponent from the one given by the Drude-Kubo

and Landauer approaches. Still, much more work is needed to understand the origin

of these discrepancies and connect them to the critical structures of the eigenfunctions

and eigenvalues. We also found that the perturbation matrix exhibits fractal structures

at the critical point. A qualitative argument allowed us to connect the distribution of

the matrix elements of the current operator with the fractal dimensions of the spectrum

and eigenstates of the Harper model.

There are numerous ways to extend these studies, both within and beyond the frame-

work of the two ring systems. For our quasi-1d studies, we focused on disorder strength

dependence of the conductance. This allowed us to identify the similarities and dif-

ferences between the SLRT and the Kubo-Greenwood results. Currently, we extend

our studies [15] to understanding the scaling properties of mesoscopic conductance with

respect to both the system size and localization length. The distribution of mesoscopic

conductance and the analysis of its fluctuations is another promising direction. This

will shed light on the question: How is the so-called Universal Conductance Fluctua-

tions (UCF) reflected in the frame of SLRT? For both systems, it may be interesting

to see how the level broadening, which can be due to noisy driving or interaction with

the environment, affects the conductance results. We can also apply SLRT to other

systems exhibiting Metal-Insulator transition, i.e. disordered 2d systems in the presence

of magnetic field and 3D lattices at critical disorder strength. The aim will be to build

a theory that can explain SLRT results in critical systems in general.

Semi-linear response theory is a novel framework to study the conductance of meso-

scopic objects. It goes beyond the traditional LRT/Kubo framework, and describes

equivalently a wide range of regimes. Application of SLRT to mesoscopic systems can

reveal new insights about their transport properties.



Appendix A

Kramers-Kronig Relation

Im(ω)

Re(ω)−R +R

l 2

l 1

Figure A.1: The path of the integration of Eq. A.1

We consider σ(ω) an analytic function on the complex plane. The integration

∮
dω

2π
σ(ω) exp(−iωτ) = 0 (A.1)

along a semicircular loop of radius R → ∞ as shown in Fig. A.1, with τ < 0, can be
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broken down into

lim
R→∞

∫ +R

−R

dω

2π
σ(ω) exp(−iωτ) + lim

R→∞

∫
l2

dω

2π
σ(ω) exp(−iωτ) = 0, (A.2)

where l2 is the semicircular path from +R to −R along the upper half of the complex

plane. We will make use of Jordan’s Lemma which states that if a function f(ω) is

analytic on the upper half of the complex plane and f(z) → 0 as |z| → ∞, then for

every positive a,

lim
R→∞

∫
l2

f(z) exp(iaz) dz = 0, (A.3)

if we integrate along a semicircular arc on the upper half of the complex plane with

radius R as shown by l2 in Fig. A.1 [55]. Applying this lemma to Eq. A.2 results in

the second integration term equals zero. The remaining term is the Fourier transform

of the function σ(ω), which is

σ(τ) = lim
R→∞

∫ +R

−R

dω

2π
σ(ω) exp(−iωτ) = 0, (A.4)

for τ < 0. Eq. A.4 can also be seen as the result of the “causality principle”, as the

effect cannot precede the cause (which happens here at τ = 0).

Now we consider an integral ∮
dz

2πi
σ(z)

(z − ω)
(A.5)

along the same semicircular loop with R→∞ as in Fig. A.1, where here ω is a complex

number. According to Cauchy’s integral formula [55], for a function g(z) analytic on

and inside the domain of integration,

∮
dz

2πi
g(z)

(z − z0)
=


0 if z0 is outside the domain of integration

g(z0) if z0 is inside the domain of integration.
(A.6)

Applying this to Eq. A.5, where z = ω′+ is where ω′ is a real number and s is a positive

number with s→ 0+ ∮
dω′

2πi
σ(ω′ + is)

[ω′ − (ω − is)]
= 0, (A.7)
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since ω′ − is is on the lower half of the complex plane. Again, the integration can be

broken down as in Eq. A.2 to be an integration over the line along the real axis l1 and

along the semicircular arc l2. Using Jordan’s lemma, the integration along l2 is again

zero. This gives

lim
s→0+

∫ +∞

−∞

dω′

2πi
σ(ω′ + is)

[ω′ − (ω − is)]
= 0. (A.8)

Now we will use the principal value identity [56] to Eq. A.8, in which for a real number

x

lim
s→0+

1
x± is

= ∓iπδ(x) + PV
1
x

(A.9)

where we have used the definition of Cauchy’s principal value [55]

PV

∫ +∞

−∞
f(x) dx ≡ lim

R→∞

∫ +R

−R
f(x) dx. (A.10)

This results in

σ(ω) = −PV
∫ +∞

−∞
i
dω′

π

σ(ω′)
(ω′ − ω)

. (A.11)

The function σ(ω′) is a complex function, and we can decompose it to its real and

imaginary components: σ(ω′) = σ1(ω′) + iσ2(ω′). If we equate the real parts and the

imaginary parts of Eq. A.11 we obtain the Kramers-Kronig relation

σ1(ω) = PV

∫ +∞

−∞

dω′

π

σ2(ω′)
(ω′ − ω)

(A.12)

σ2(ω) = −PV
∫ +∞

−∞

dω′

π

σ1(ω′)
(ω′ − ω)

. (A.13)
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Fluctuation-Diffusion Relation

There is a simple linear response (Kubo) expression that relates the diffusion coefficient

to the power spectrum C̃(ω) of the fluctuations of the acting force. Although the results

can be stated for a general external force acting on our system, in the following we will

assume one of the traditional mesoscopic set-ups: Namely, we can write the generalized

force, in this case being the average current I through the ring

F = −∂H
∂Φ

=
ev

L
, (B.1)

Assuming a steady state current, the time derivative of H can be written as

dH
dt

= −Φ̇I, (B.2)

which can be integrated to give us

H(t)−H(0) = −
∫ t

0
Φ̇(t′)I(t′)dt′ ≈ −Φ̇

∫ t

0
I(t′)dt′. (B.3)

In the second equality we assumed that the rate of change of the magnetic flux is very

small (DC limit) and thus Φ̇ is constant.
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We write the energy dispersion, averaged over a microcanonical ensemble, as

(∆E)2 = 〈(H(t)−H(0))2〉m = 〈Φ̇2

∫ t

0
I(t′)dt′

∫ t

0
I(t′′)dt′′〉

= Φ̇2

∫ t

0
dt′
∫ t

0
dt′′〈I(t)I(t′′)〉m = Φ̇2

∫ t

0
dt′
∫ t

0
C(t′, t′′), (B.4)

where C(t′, t′′) = 〈I(t)I(t′′)〉m is the current correlation function. If we further assume

that C depends only on the difference between t′ and t′′, we can define τ = t′ − t′′, and

rewrite the energy dispersion as

(∆E)2 = Φ̇2

∫ t

0
dt′′
∫ t

−t
dτ C(τ) =

(∫ t

−t
dτ C(τ)

)
Φ̇2t. (B.5)

Say (∆E)2 is dispersing, and if we use the relation (∆E)2 = 2DEt where DE is the

diffusion coefficient, we obtain

DE =
1
2
Φ̇2

∫ t

−t
dτ C(τ). (B.6)

C̃(ω) is defined as the Fourier transform of C(τ),

C̃(ω) =
∫ +∞

−∞
eiωτ C(τ) dτ. (B.7)

At the DC limit, ω → 0, so we obtain

C̃(0) =
∫ +∞

−∞
C(τ) dτ. (B.8)

The diffusion approximation applies in the limit t→∞, and so we can write the diffusion

coefficient as

DE =
1
2
C̃(0)Φ̇2. (B.9)



Appendix C

Connection Between

Dissipation-Diffusion Relation

and Kubo-Greenwood Formula

We will define Cm(t) as the current correlator that corresponds to an eigenstate |m〉 of

the Hamiltonian and can be written in bra-ket notation as

Cm(t) = 〈m | I(t) I(0) |m 〉. (C.1)

Above I(t) has to be understood as the Heisenberg picture of the current operator i.e.

I(t) = U † I0 U where I0 is the time-independent current and U = e−iHt/~ is the time

dependent evolution operator. We can then write

Cm(t) = 〈m |U † I0 U I0 |m 〉 =
∑
n

〈m|U †I0|n〉〈n|U I0|m〉

=
∑
n

exp(iEmt/~)〈m|I0|n〉 exp(−iEnt/~)〈n|I0|m〉

=
∑
n

exp (−iωnmt) |〈m|I0|n〉|2, (C.2)

if we define ~ωnm = En − Em.
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We will define C(t) as the current correlator, averaged over multiple nearby eigenstates

is

C(t) = 〈Cm(t)〉m =
1
M

∑
m,n

exp(−iωnmt)|〈m|I0|n〉|2. (C.3)

The averaging over multiple states is essentially the same as averaging over micro-

canonical ensembles used in the derivation. We will then take the Fourier transform of

C(t),

C̃(ω) =
∫
dtC(t) exp(iωt)

=
∫
dt

1
M

(∑
m,n

exp(−iωnmt)|〈m|I0|n〉|2
)

exp(iωt)

=
1
M

∑
m,n

|〈m|I0|n〉|2
∫
dt exp (i(ω − ωnm)t)

=
1
M

∑
m,n

|〈m|I0|n〉|2 2π δ(ω − ωnm). (C.4)

If we consider that I0 = ev/L, then C̃(ω) can be written as

C̃(ω) = 2π
( e
L

)2 1
M

∑
m,n

|〈m|v|n〉|2δ(ω − ωnm). (C.5)

By applying this result to the Dissipation-Diffusion Relation version of the conductance

of 3.3, we obtain the conductance form that is similar to the Kubo-Greenwood version

of conductance of Section 3.2.



Appendix D

Hamiltonian in Adiabatic Basis

In the adiabatic basis, the basis vectors are the instantaneous eigenvectors of the Hamil-

tonian H. We consider a Hamiltonian matrix of the form H = H0 + ΦI, where H0 is

the unperturbed Hamiltonian matrix, I the perturbation matrix, and Φ the (scalar)

perturbation strength. For a basis vector |n(Φ)〉, we can find the corresponding energy

eigenvalue using

H(Φ)|n(Φ)〉 = En(Φ)|n(Φ)〉. (D.1)

A vector |ψ〉 =
∑
an|n(Φ)〉 (where an = 〈n(Φ)|ψ〉) follows the time-dependent Schrödinger

equation

Hψ = i~
dψ

dt
. (D.2)

Using the definition of an, we can write

dal
dt

=
〈
l | ∂ψ
∂t

〉
+ Φ̇

〈
∂l

∂Φ
|ψ
〉

= − i
~
〈l |Hψ〉+ Φ̇

∑
k

〈
∂l

∂Φ
| k
〉
〈k |ψ〉

= − i
~
Elal + Φ̇

∑
k

〈
∂l

∂Φ
| k
〉
ak. (D.3)
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To find the braket term in the above equation, we will use the orthogonality condition

〈l(Φ)|k(Φ)〉 = 0 for l 6= k. If we take derivative of this with respect to Φ, we obtain〈
l | ∂k
∂Φ

〉
= −

〈
∂l

∂Φ
| k
〉
. (D.4)

We will also use another orthogonality condition 〈l(Φ)|H(Φ)|k(Φ)〉 = 0 for l 6= k. Again,

if we take the derivative of this equation with respect to Φ, we get〈
∂l

∂Φ
|H | k

〉
+
〈
l | ∂H
∂Φ

| k
〉

+
〈
l |H | ∂k

∂Φ

〉
= 0. (D.5)

From the Hamiltonian we see that ∂H/∂Φ = I. Substituting Eq. D.5 to the above

equation we obtain 〈
∂l

∂Φ
| k
〉

=
Ilk

(El − Ek)
. (D.6)

Eq. D.3 can then be written as

dal
dt

= − i
~
Elal + Φ̇

∑
k 6=l

Ilk
(El − Ek)

ak. (D.7)

We will write H(Φ)|ψ〉 in terms of the instantaneous basis vectors, and so we can assume

that at an instant of time the basis vectors are constant, and hence

H(Φ)|ψ〉 = i~
d

dt

∑
l

al|l〉 = i~
∑
l

dal
dt
|l〉

=
∑
l

Elal + i~Φ̇
∑
k 6=l

Ilk
(El − Ek)

ak

 |l〉. (D.8)

If |ψ〉 is one of the basis vectors, for example |m〉, the term for the coefficients are

al = δlm and Eq. D.8 can be written as

H(Φ)|m〉 =
∑
l

Elδlm + i~Φ̇
∑
k 6=l

Ilk
(El − Ek)

δkm

 |l〉
=

∑
l

(
Elδlm + i~Φ̇

Ilm
(El − Em)

)
|l〉 (D.9)
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Hence we can write the matrix elements of H in adiabatic basis representation to

be

〈n|H(Φ)|m〉 = 〈n|
∑
l

(
Elδlm + i~Φ̇

Ilm
(El − Em)

)
|l〉

=
∑
l

(
Elδlm + i~Φ̇

Ilm
(El − Em)

)
δln

= Enδnm + i~Φ̇
Inm

(En − Em)
(D.10)
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