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1. Overview

While the physics of the previous century is mainly characterized by great advances in
the understanding of the properties of single particle systems, recent experimental devel-
opments have placed the effects of interactions at the top of the current research agenda.
One of the most fascinating achievements was the realization of Bose-Einstein conden-
sation of ultra-cold atoms in optical lattices (OL) [7, 47, 124, 158] and the creation of
“atom chips” [90, 108, 159, 175] which have been suggested as potential building blocks
for quantum information processing [183] while at the same time they allow for novel,
concrete applications of quantum mechanics such as atom interferometers [10, 186, 204]
and lasers [7, 11, 107, 148, 158], atom diodes and transistors [149, 188, 195]. The precise
tailoring and manipultion of OLs, on the other hand, has allowed us to investigate com-
plex solid-state phenomena, such as the Mott-Insulator to superfluid transition [102], the
Josephson effect [47], the atom blockade phenomenon in quantum-dot-like potentials [43],
Anderson localization [9, 51, 91, 143, 185], and Bose-Glass transitions [68]. In fact, it is
envisioned that the emerging field of “atomtronics”, i.e. the atom analog of electronics
materials and circuits, will be able to provide nanoscale devices of unprecedented quality
compared to the solid-state ones where imperfections and decoherence quickly destroy the
delicate quantum effects. Finally, interacting bosonic systems – having a well-defined clas-
sical limit – provide an excellent playground to address fundamental questions related to
the advancement of classical, semiclassical, and statistical methods.

Among all the exciting issues raised in the framework of interacting Bose systems, this
thesis focuses on studying their response/dynamical evolution caused by an external driving
field and on their transport and decay properties. The work is structured as follows:

• In Chapter 2 we set up the physical and mathematical framework for the description
of interacting bosons on a lattice. After a brief introduction to the basic concepts of
Bose-Einstein condensation, and how the condensate can be manipulated using opti-
cal lattices, we derive the Bose-Hubbard Hamiltonian (BHH) which is the paradigm
model as far as the quantum description is concerned. Then the semiclassical limit
of the BHH – the discrete nonlinear Schrödinger equation (DNLS) – as well as the
mean-field (classical) description, the so-called Gross-Pitaevskii equation (GPE), is
discussed. We give an overview of the relevant literature and of the various physical
systems that are captured by the BHH including, among others, arrays of Josephson
junctions and bond vibrations in small molecules. The chapter ends with a detailed
description of the BHH trimer, a three-site ring-lattice which is the main model used
in this thesis.
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1. Overview

• In (ultra-)cold atom-optics experiments, an effective potential for the atoms is cre-
ated using lasers and magnetic fields. By time-varying the fields, a driving force
is generated. Driven systems are described by parametric Hamiltonians, a funda-
mental concept in physics, which we introduce in Chapter 3. We consider a fam-
ily of chaotic Bose-Hubbard Hamiltonians parameterized by the coupling strength k
between neighboring sites. As k is increased the eigenstates undergo changes, re-
flected in the structure of the local density of states (LDoS). We analyze [112, 114]
these changes, both numerically and analytically, using perturbative and semiclassi-
cal methods.

• The study and development of a theory for the quantum evolution of driven interact-
ing bosonic systems with underlying classical chaotic dynamics is still lacking. We
study the resulting quantum dynamics [115] (Chapter 4) and the irreversibility of the
quantum motion [31] (Chapter 5), also used in the framework of “fidelity” studies in
quantum computation.

• In Chapter 6 we initiate the study of quantum pumping/stirring in BECs [113] with
the aim to identify optimal pumping cycles and propose such a device in order to
probe the interatomic interactions. The induced circulating atomic current is expected
to be extremely accurate, and would open the way to various applications, either as a
new metrological standard, or as a component of a new type of quantum information/
processing device.

• The interplay of intrinsic dynamics with coupling to the continuum, radiation fields,
or to any other external influence, such as measurement, is an important subject for
various branches of modern physics that boosted the research on open systems. In
Chapter 7 we investigate the structure of the resonance widths [116] of a Bose-
Hubbard dimer which is coupled to the continuum at one of the sites using an effective
non-Hermitian Hamiltonian formalism.

Throughout this thesis we will approach quantum dynamics, decoherence, transport, and
decay in interacting bosonic systems from a fundamental perspective, namely through the
close interplay and exchange of ideas and techniques developed in areas as diverse as sta-
tistical, mathematical (nonlinear dynamics and wave chaos), atomic and solid state physics.
At the core of this approach are tools of fundamental (e.g. wave/quantum chaos) and
applied (e.g. solid-state) physics and mathematics employed in the context of the above
cross-fertilization. On the one side, these tools are further deepened and extended, and
on the other side, applied to the analysis of specific problems of great theoretical as well
as technological interest. Underlying these problems is the fundamental question of un-
derstanding, at the quantum mechanical level, the traces of classical complex dynamics in
the transport properties of (ultra-)cold atom devices. The possibility of manipulating such
devices holds promise for application in interferometry, microscopy, atom lithography and
quantum information processing.
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2. Interacting Bosons on a Lattice
and the Bose-Hubbard Hamiltonian

In 1924, S. N. Bose [35] established the quantum statistics of non-interacting particles and
derived Planck’s radiation law by assuming that each quantum state can be occupied by
an arbitrary number of photons. One year later, Einstein applied this concept to an ideal
gas of identical atoms and predicted a new kind of phase transition [78, 79], known as the
Bose-Einstein condensation. As illustrated in Fig. 2.1, the principle behind behind Bose-
Einstein condensation is that below a critical temperature Tc, a macroscopic fraction of
atoms “condenses” into the ground state of the system. In other words, as the temperature
T is decreased, the thermal de-Broglie wave length, which scales as T−1/2, is increased
and at the critical point becomes comparable to the mean inter-particle distance. Therefore,
the wave functions of the particles are sufficiently extended such that their overlap leads
to a phase space density larger than unity, thus forming a Bose-Einstein condensate (BEC)
as shown in Fig. 2.2. The otherwise intricate many-body wave function Ψ then reduces
to a product of N identical single-particle ground state wavefunctions – in other words, all
the atoms in the BEC are oscillating in unison – and can be represented by a single order
parameter, the macroscopic condensate wave function ψ.

Despite the discovery of several phenomena which invoke the concept of Bose-Einstein
condensation, notably superfluidity, it was only in 1995 that BEC was observed in its “ideal”
form in a cloud of cold alkali atoms by the groups of Wieman/Cornell [8] and Ketterle [69]
all of whom were awarded a Nobel prize.1 Though there were many obstacles in creating a
Bose-Einstein condensate, the main one [152] was to cool the particles to temperatures close
to absolute zero in order to achieve the necessary phase space density. A major step towards
overcoming this obstacle was the realization of laser cooling of atoms, a technique which
was proposed by the Nobel laureates W. D. Phillips, S. Chu, and C. Cohen-Tannoudji [62]
in the 1980’s. The principle of laser cooling is that due to the Doppler effect the atoms
absorb light at a different rate depending on whether they are moving away from or towards
the laser. The resulting kick in momentum can then be employed to slow down the atoms.
Laser cooling led to temperatures on the order of a few hundred microkelvin which is never-
theless is too high to create a BEC.2 After the atoms are laser-cooled, “evaporative cooling”
techniques are used: the pre-cooled atom cloud is kept in a magnetic dipole trap when
the potential is slightly decreased. Thus, only the most energetic particles escape, removing
more than the average energy (much like steam evaporating from a cup of hot coffee). Once

1Good introductory and overview articles on BEC include [12, 67, 132, 140, 167].
2Actually, the temperatures attained were below the theoretical predictions because sub-Doppler effects due

to the pumping force were neglected. For a recent review on laser cooling see, for example, Ref. [132].
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

Figure 2.1.: Criterion for Bose-Einstein condensation. At high temperatures, a weakly inter-
acting gas can be treated as a system of “billiard balls”. In a simplified quantum description,
the atoms can be regarded as wave packets with an extension of their de-Broglie wavelength
λdB = (2πh̄2/mkBT )1/2, where m is the mass of the particle, kB is the Boltzmann factor and T is
the temperature. At the BEC transition temperature Tc, λdB becomes comparable to the distance be-
tween atoms, and a Bose condensate forms. As the temperature approaches zero, the thermal cloud
disappears, leaving a pure Bose condensate. Figure taken from [132].

the remaining atoms have re-thermalized to a reduced temperature, the trapping potential
is repeatedly lowered, leading to a successive cooling of the particles and, finally, to the
creation of a BEC at temperatures of several nanokelvin. It’s a legitimate question to ask
why the atomic gas doesn’t liquefy or even solidify at these low temperatures? The answer
is that the particle density is kept very low (typically 1014−16 particles/cm3) throughout
the cooling process. As a consequence, three-body collisions rarely occur. Thus, the inter-
atomic interactions are dominated by two-body collisions which can be described by s-wave
scattering [67].

Creating the BEC, however, is only the first step. Next, its properties must be explored.
Although a multitude of fascinating experiments on ultra-cold atoms have been performed,
BECs in (periodic) lattices are exceptionally interesting. On the one hand, these systems al-
low for the design of powerful nanoscale devices (“atomtronics”); on the other hand, bosons
on lattices resemble crystals. Due to the unprecedented degree of control and precision as
far as both the lattice geometry and the manipulation of the atomic cloud is concerned
these “artificial crystals” constitute an ideal framework to study solid-state and mesoscopic

10



Figure 2.2.: Observation of Bose-Einstein condensation by absorption imaging. Shown is absorp-
tion vs two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion
observed after 6ms time of flight. The left picture shows an expanding cloud cooled to just above
the transition point; middle: just after the condensate appeared; right: after further evaporative cool-
ing has left an almost pure condensate. The total number of atoms at the phase transition is about
7×105, the temperature at the transition point is 2µK. Figure taken from [132].

physics, including fundamental questions on how the inter-particle interactions affect the
behavior of the system.

Recent advances in micro-trap technology [108, 129, 159, 175] seem to be the most
promising candidates for the realization of lattices consisting only of a few sites. In this
technique, a magnetic potential is created by wires located on micro-chips. The conden-
sate is either created directly in those traps [108, 159] or moved there after the evaporative
cooling stage [105]. Due to the miniaturization these traps have also been suggested as po-
tential building blocks for quantum information devices. However, to date the standard way
of trapping atoms is using optical lattices which we are going to discuss in the following
section.

In our study we will employ both a purely quantum and a semiclassical description of
the bosonic systems. With respect to the former we utilize the Bose-Hubbard Hamilto-
nian (BHH), one of the paradigm models concerning the quantum treatment of interacting
bosons on (small) lattices. The BHH captures the physics of various bosonic systems and
therefore the obtained results are not limited to Bose-Einstein condensates but should also
be applicable to bond excitations in small molecules or Josephson Junctions. In the semi-
classical limit the BHH reduces to the so-called discrete nonlinear Schrödinger equation
(DNLS). By using both quantum and semiclassical descriptions we will later identify traces
of quantum-classical correspondence.

In this chapter we set up the physical and mathematical framework for the description of
interacting bosons on a lattice. We start with a brief introduction on how a Bose-Einstein
condensate can be manipulated using optical potentials, a technique which has been mas-
tered to date by over fifty experimental groups worldwide [203], making the BEC one of

11



2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

the best controlled many-body systems. In Section 2.2, the Bose-Hubbard Hamiltonian is
derived starting from second quantization. After discussing its validity, we show how to
approach the semiclassical limit of the BHH model leading to the DNLS in Section 2.3.
Although not used in this work, we also briefly present for the sake of completeness the
celebrated Gross-Pitaevskii equation (GPE), a mean-field (classical) description of Bose-
Einstein condensates which in the appropriate limit reduces to the DNLS. In Section 2.5,
we discuss the various systems that are captured by the BHH including an overview of
the relevant literature. The chapter ends with a detailed description of the BHH trimer, a
three-site ring-lattice, which is the main model used in this work.

2.1. Optical lattices

During the evolution of the laser cooling techniques it became clear that the interference
patterns resulting from the laser beams shining on the atom cloud effectively created a three
dimensional egg carton, i.e. a lattice potential, for the atoms. This results from the AC Stark
shift as we explain below and led, for example, to the creation of artificial crystals where
the atoms are bound by light. In contrast to solid-state systems, these lattices can be made
largely free of defects and can be easily manipulated in the experiment.3 Consequently,
optical lattices are currently one of the leading system models for interacting bosons in
periodic potentials. Therefore, they are especially well suited to experimentally realize the
studies proposed here. In the following we will elaborate a bit more on how optical lattices
are created and manipulated.

The interaction of neutral atoms with an electromagnetic field of frequency ωL can be
split in a conservative and a dissipative part. The latter results from the absorption of a
photon from the field which is spontaneously emitted (i.e. scattered in a random direction)
and leads to a net momentum kick in the direction of the laser. This mechanism is also
used for laser cooling. The rate of the scattering process Γscat grows linearly with the peak
intensity of the light Ip and is inversely proportional to the detuning ω0−ωL of the laser
squared [61]

Γscatt =
Ip

(ω0−ωL)2 , (2.1)

where ω0 is the transition frequency of the atom at which the photon is absorbed. The
conservative part, on the other hand, results from the electric dipole induced in the atom by
the electric component of the field. The electric dipole oscillates at the driving frequency
ωL of the laser light and its interaction with the electric field E(t) induces an energy shift
∆E (the AC Stark shift) in the atomic energy level

∆E =−1
2

α(ωL)〈E2(t)〉 , (2.2)

3For a recent overview of optical lattices see for example Morsch et al. [152] and references therein.
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2.2. Quantum description of cold bosons on a lattice: The Bose-Hubbard
Hamiltonian

where α is the polarizability of the atomic level, exhibiting a resonance at ω0 and brackets
〈·〉 denote a cycle average. If the detuning of the laser is negative ωL < ω0 (“red-detuned”)
then the induced dipole D = α(ωL)E is in phase with the electric field. Therefore, the
potential energy is minimal when the intensity of the laser is maximal and the atoms are
attracted to the bright spots. In the opposite case of a blue-detuned laser (ωL > ω0) the atoms
are attracted by the dark spots in the field. This is the experimentally favorable situation
since the scattering rate Γscatt effectively decreases with the decreasing light intensity. The
depth V0 of the optical trap is [152]

V0 ∝
Ip

ω0−ωL
. (2.3)

Accordingly, in order to have a conservative potential one has to work at the largest detuning
possible since then the dissipative part given by (2.1) can be neglected.

At this point the atoms are radially confined to the waist size of the laser beam but there
is not lattice yet. The simplest way to create a periodic optical potential is to make two
laser beams counter-propagate and let them interfere. For a wavelength λL this results in a
potential of the form

V (x) = V0 cos2(πx/d) , (2.4)

where d = λL/2 is the distance between two minima in the direction of the laser beam.
In practice, such a lattice can be created, for example, by retro-reflecting a laser beam and
inserting an opto-acoustical modulator. This device allows for fast (less than a microsecond)
and precise control of the laser intensity and also introduces a shift of the laser frequency
of tens of MHz [152]. Alternatively, one can use two phase-coherent beams and introduce
a frequency shift between them. As a consequence the lattice is not stationary but moving
and by increasing the shift one can even create accelerated optical lattices.

After the condensate has evolved on the lattice, the next step is to measure the atomic
cloud. A popular technique is time of flight measurements. The trapping potential is
switched off and a resonant laser is shone on the atoms from above while a CCD cam-
era takes an image of the light distribution from below the condensate. Since this proce-
dure destroys the condensate, a time-resolved experiment requires repetitive measurements,
starting each time with the same initial conditions. This is not an obstacle since the of cool-
ing of the atoms can be achieved within few seconds while the condensates can exist in the
traps up to the order of several minutes [12, 140].

2.2. Quantum description of cold bosons on a lattice:
The Bose-Hubbard Hamiltonian

We now turn to the mathematical description of (ultra-)cold bosons loaded on a lattice.
Here we derive the Bose-Hubbard Hamiltonian (BHH), the simplest non-trivial quantum
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

model that takes into account the competition between the interaction energy and the kinetic
energy of the system. Then we discuss the BHH’s validity.

2.2.1. Derivation from second quantization

As mentioned above, the particle density in the atomic cloud of a BEC is extremely low,
hence three-body collisions are rare events. Accordingly, the many-body Hamiltonian de-
scribing N interacting bosons confined by an external potential is given in second quantiza-
tion by [67, 124]

Ĥ =
Z

drΨ̂
†(r)

[
− h̄2

2m
∇

2 +Vlat(r)+Vext(r)
]

Ψ̂(r)

+
1
2

Z Z
drdr′ Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r) (2.5)

where Ψ̂(r) and Ψ̂†(r) are the bosonic field operators that annihilate and create a par-
ticle at the position r respectively and V (r− r′) is the two-body inter-atomic potential.
The term Vlat(r) describes the (optical) lattice potential while Vext(r) accounts for a possibly
present additional potential which is slowly varying along the lattice like the magnetic trap
used for the evaporative cooling. Due to the extremely low temperatures (typically sev-
eral nanokelvin) the predominant inter-atomic interaction results from s-wave scattering.
Since also the particle density (and hence the mean inter-atomic distance) is very low we
can approximate the otherwise complicated two-body interaction potential V (r−r′) with a
delta-like contact-potential [140]

V (r− r′)≈ 4πash̄2

m
×δ(r− r′) , (2.6)

where as is the s-wave scattering length and m is the atomic mass. Even with this simplified
potential V (r− r′) solving (2.5) is impractical if not impossible but we can use the fact
that the underlying potential is periodic Vlat(r) = Vlat(r + d) with d being the lattice vector:
The eigenstates of a single atom moving in a potential Vlat(r), would be the well-known
Bloch functions φq,n(r) = eiqruq.n(r), where uq,n(r + d) = uq,n(r) and q is the so-called
quasimomentum. The presence of the periodic potential leads to the formation of the so-
called Bloch bands in the energy spectrum which are labeled by the sub-index n. As in a
substantial part of the experimental studies [47,48,102,158,201] we consider deep lattices
in this work. Therefore, it is useful to work in a basis where the eigenfunctions are localized
at the sites i. Such a basis is given by the Wannier-functions

wn(r− ri) =
1√

f ∑
q

e−iqriφq,n(r) , (2.7)

which are obtained via a uniform transformation from the Bloch basis. Above, the summa-
tion is done over the quasi-momentum in the first Brillouin zone and f denotes the number
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2.2. Quantum description of cold bosons on a lattice: The Bose-Hubbard
Hamiltonian

of lattice sites.4 If the lattice is deep enough such that the chemical potential is too small
to excite states outside the first Bloch band [124, 150] we can expand the field operators Ψ̂

of the above Hamiltonian (2.5) in the local modes wn(r− ri) of the wells keeping only the
states belonging to the lowest band

Ψ̂(r) =
f

∑
i=1

b̂iw0(r− ri) , (2.8)

where b̂i annihilates a boson at site i and f is the size of the lattice. The Hamiltonian (2.5)
then reduces to the Bose-Hubbard Hamiltonian [124, 150]

Ĥ =
f

∑
i=1

vi b̂†
i b̂i +

1
2

f

∑
i=1

Ui b̂†
i b̂†

i b̂ib̂i− ∑
〈i, j〉

ki jb̂
†
i b̂ j (2.9)

=
f

∑
i=1

vi n̂i +
1
2

f

∑
i=1

Ui n̂i (n̂i−1)− ∑
〈i, j〉

ki jb̂
†
i b̂ j , (2.10)

where 〈i, j〉 indicates summation over adjacent sites j = i± 1. In the second step we used
the canonical commutation rules for the bosonic annihilation (creation) operators b̂i, (b̂†

i )

[b̂i, b̂
†
j ] = δi, j , (2.11)

and the definition of the number operators

n̂i = b̂†
i b̂i . (2.12)

The parameters in Eq. (2.10) are

vi =
Z

d3rVext(r)|w0(r− ri)|2 (2.13)

Ui =
4πash̄2

m

Z
d3r |w0(r− ri)|4 (2.14)

ki j =
Z

d3r w∗0(r− ri)
[
− h̄2

2m
∇

2 +Vlat(r)
]

w0(r− r j=i±1) . (2.15)

Here vi is the on-site potential at each lattice site, Ui is the on-site interaction strength,5 and
ki j parameterizes the coupling strength which accounts for the tunneling of particles be-
tween neighboring sites.6 Therefore, ki j is the proportionality factor for the kinetic energy.

4Here we are interested in one-dimensional lattices, but the derivation also applies to higher dimensions.
5The inverse of the integral in (2.14) is also referred to as the effective mode volume V−1

eff =R
d3r |w0(r− ri)|4 .

6Apart from Chapter 6 we will consider a setup where Ui = U and ki j = k.
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

The BHH was originally conceived [152] to describe superfluid He in restricted geome-
tries like porous media (see e.g. [88]) and later suggested by Jaksch et. al [124] as a de-
scription of BEC in optical lattices. Both works were focused on quantum phase transitions
which is not the topic of this thesis but an important result that we mention here. In con-
trast to their classical analog, quantum phase transitions occur at T = 0. In other words
they are not driven by the temperature T but result only from quantum (not thermal) fluc-
tuations [180]. The phase transition in the Bose-Hubbard Hamiltonian (2.10) is a result of
the competition between the interaction energy and the kinetic energy. Roughly speaking,
the nonlinearity tries to localize the bosons, while the coupling tries to delocalize them.
Consider the limit U � k for an optical lattice with exactly one atom per well, i.e., a filling
factor n̄ = N/ f = 1. The energy cost to move one atom in this case is U and determines
the energy gap to the first excited (i.e. conducting) state. If this energy is not provided
by, say, an external potential that sufficiently tilts the lattice, this configuration is insulating
(no atom current) and the system is in the so-called Mott-insulator state [88, 124]. In the
other limit of k�U one can neglect the interaction term. The resulting Hamiltonian is then
diagonal in the Bloch basis [71] and all particles will be completely delocalized over the
entire lattice. For vanishing on-site potentials vi = 0 the BEC ground state corresponds to a
quasimomentum q = 0. In contrast to the previous case the atoms form a superfluid. Thus,
tilting the lattice even slightly will cause the bosons to move. As the parameter U/k is
changed from ∞ → 0 the BEC exhibits the so-called Mott-insulator to superfluid transition
which was experimentally confirmed in a seminal paper of Greiner et al. [102]. We note
that this transition is appreciable only for small integer filling factors n̄. If the filling factor
is non-integer then there is always one atom that can move. This is sufficient to ensure
phase coherence between wells and hence the system is in the superfluid regime.

One of the advantages of realizing the BHH with optical lattices is that all parameters
are accessible in the experiment. In other words, while the on-site potential vi is given
by Vext(ri), Ui and ki are determined by the wavefunction w0(r− ri) which depends on the
lattice depth V0, i.e. on the intensity of the interfering laser beams. For typical lattice con-
figurations the tunneling strength decreases exponentially with the lattice depth k ∼ e−V0 ,
while the on-site interaction grows algebraically [176] U ∼ V D/4

0 (here D is the dimen-
sionality of the lattice). Additionally, the scattering length as can be tuned using Feshbach
resonances [140] – by applying an additional magnetic field the hyperfine levels that deter-
mine the s-wave scattering are shifted. With this technique, the parameter as can be changed
over several orders of magnitude [118] including a change in sign. For negative scattering
lengths as the condensate becomes unstable above a certain boson number N due to the
attractive interaction. Unless stated otherwise, we consider only repulsive interactions, i.e.
as > 0.
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2.3. Semiclassical limit of the BHH and the discrete nonlinear Schrödinger
equation

2.2.2. Validity of the local-mode approximation

In the derivation of the Bose-Hubbard Hamiltonian (2.10) we made several assumptions.
We already discussed the approximation of the atom-atom interaction by a delta-like contact
potential above. Next, we expanded the field operators Ψ̂ in the single particle Wannier
states of the lowest Bloch band. For this it is crucial that the chemical potential, the kinetic
energy and the interaction energy are too low to excite states in the second Bloch band.
Accordingly, the lattice must be very deep [67, 150, 152] since this leads to a large energy
gap between the bands. While the above parameters (2.13)-(2.15) can be readily evaluated
numerically for a given lattice potential (2.4), qualitative insight in their dependence on V0
is gained by a harmonic approximation around the potential minima (see, for example, Ref.
[124]). Furthermore, the interaction energy has to be smaller than the single particle ground
state energy E0, otherwise the single particle wavefunction may be strongly modified by
the interaction. Approximating the wavefunction with a Gaussian and taking a standard
harmonic trap with a size of 10µm and a scattering length as = 5nm one finds that the BHH
model is valid for up to several hundred bosons [150] per trap.7

Moreover, deep lattices allow us to drop higher order terms when inserting Eq. (2.8) into
(2.5). In the interaction we only took into account the on-site contribution, but neglected
higher order terms of the typeZ

d3r |w0(r− ri)|2|w0(r− rj)|2 ≈ 0 . (2.16)

Additionally, we made a tight-binding approximation with respect to the coupling strength
k and omitted terms that go beyond nearest-neighboring wells

Z
d3r w∗0(r− ri)

[
− h̄2

2m
∇

2 +Vlat(r)
]

w0(r− ri±2,3,...)≈ 0 . (2.17)

It turns out [63, 124, 150] that this is justified since these terms are usually two orders
of magnitude smaller than the ones which were kept. Summarizing the above, the BHH
is a good description for deep lattices and moderate boson numbers, which is the setup
considered in this work.

2.3. Semiclassical limit of the BHH and the discrete
nonlinear Schrödinger equation

One advantage of the bosonic systems described by the BHH (2.10) is that they have a
well-defined semiclassical limit, which allows us to ask fundamental questions of quantum-
classical correspondence (QCC). Naively, one might expect that the semiclassical limit of

7We note that for very large boson numbers and constant interaction strength U , one can apply the so-called
Thomas-Fermi approximation (see e.g. Ref. [67]) which neglects the kinetic energy.
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

the BHH simply corresponds to large particle numbers N � 1. However, the interaction
strength U also has to be taken into account appropriately in the limiting process N → ∞.
Formally, this can be seen if we define rescaled creation and annihilation operators

ĉ(†)
i =

1√
N

b̂(†)
i ; ˆ̃ni =

1
N

n̂i , (2.18)

leading to8

Ĥ
N

=
f

∑
i=1

vi ˆ̃ni +
UN

2

f

∑
i=1

ˆ̃ni

(
ˆ̃ni−

1
N

)
− k ∑

〈i, j〉
ĉ†

i ĉ j . (2.19)

The commutators
[ĉi, ĉ

†
j ] =

1
N

δi, j (2.20)

vanish for large particle numbers N � 1 and therefore one can treat the rescaled operators
as c-numbers in the limit N →∞. At the same time, it is clear that the second term in (2.19)
still depends on the particle number N. Hence, the nonlinear contribution would inevitably
dominate for large N. Therefore we define

Ũ = UN; λ =
k
Ũ

, (2.21)

where Ũ is the effective nonlinearity and λ is the ratio between kinetic and nonlinear poten-
tial energy. Keeping both Ũ and λ constant as N is increased, the classical Hamiltonian H
is obtained using the Heisenberg relations

ĉ j 7→ I j eϕ j ; ĉ†
j 7→ I j e−ϕ j , (2.22)

where I j is an action and ϕ j is the associated angle (I j,ϕ j ∈ R) . Omitting the 1/N term of
the nonlinear part we then get

H̃ =
H

ŨN
=

f

∑
i=1

vi

Ũ
Ii +

1
2

f

∑
i=1

I2
i −λ ∑

〈i, j〉

√
Ii I j e−i(ϕi−ϕ j) . (2.23)

Using the canonical equations

ϕ̇ j = ∂t̃ ϕ j =
∂H̃
∂I j

; İ j = ∂t̃ I j =−∂H̃
∂ϕ j

, (2.24)

with t̃ = Ũt being the rescaled time, the classical equations of motion are obtained from
Eq. (2.23) to be

ϕ̇ j =
v j

Ũ
+ I j−λ

√
I j

Ii
cos(ϕ j−ϕi)

İ j = 2λ
√

Ii I j sin(ϕ j−ϕi) (2.25)

8Here we consider the homogenous lattice Ui = U and ki j = k but also heterogeneities can be taken into
account by defining mean values k̄, Ū .
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2.4. Mean field description of Bose-Einstein condensates: the Gross-Pitaevskii
equation

The dimensionless ratio λ = k/Ũ [71, 92, 154, 187, 202] determines the dynamics of the
classical Hamiltonian (2.23). For λ → 0 the interaction term dominates and the system
behaves as a set of uncoupled sites while for λ → ∞ the kinetic term is the dominant one.
We will discuss the classical dynamics in more detail in Subsection 2.6.3.

2.3.1. The discrete nonlinear Schrödinger equation

Alternatively, the classical Hamiltonian (2.23) is frequently expressed in complex ampli-
tudes

A j =
√

I j eiϕ j . (2.26)

In other words, one replaces the bosonic operators c j → A j, c†
j → A∗j leading to the classical

Hamiltonian
HDNLS

N
=

f

∑
i=1

vi |Ai|2 +
UN

2

f

∑
i=1
|Ai|4− k ∑

〈i, j〉
A∗i A j . (2.27)

The amplitudes A(∗)
j are conjugate variables with respect to the Hamiltonian iH and the

canonical equations read

i∂t̃A j =
∂H
∂A∗j

; −i∂t̃A
∗
j =

∂H
∂A j

, (2.28)

with the resulting equations of motion

iȦ j(t̃) = viA j(t̃)+UN
∣∣A j(t̃)

∣∣2 A j(t̃)− k ∑
i6= j

Ai(t̃) . (2.29)

The latter equation is usually referred to as the discrete nonlinear Schrödinger equation
(DNLS) [75] and is one of the prototype models used in quantum chemistry to describe
bond excitations of small molecules. In this context it represents a special case of the
so-called discrete self-trapping equation (DST) [76], which has the same form as (2.29)
but is not restricted to nearest-neighbor couplings. Under the appropriate discretization, the
DNLS can also be recovered from the mean-field description of Bose-Einstein condensates,
the (classical) Gross-Pitaevskii equation which we discuss in the next section.

2.4. Mean field description of Bose-Einstein
condensates: the Gross-Pitaevskii equation

Another way to approach the full quantum problem given by Hamiltonian (2.5) is by using
a mean field approach.9 The basic mean-field description of a dilute gas was originally

9See, for example, Ref. [67] for a detailed derivation.
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

formulated by Bogoliubov [32] for the homogenous case of a BEC in a single trap. Its
generalization to the case of time-dependent and non-uniform (due to the confinement)
configurations of the atomic cloud is given by describing the field operators Ψ̂(r) in the
Heisenberg representation by

Ψ̂(r, t) = ψ(r, t)+δΨ̂(r, t) . (2.30)

Here ψ(r, t) is a complex function defined as the expectation value of the field opera-
tor, i.e., ψ(r, t) = 〈Ψ̂(r, t)〉 and its modulus represents the condensate density through
n0(r, t) = |ψ(r, t)|2. In contrast to the operator Ψ̂(r, t), ψ(r, t) is a classical field having
the meaning of an order parameter and is often called the “macroscopic wave function of
the condensate”.

The above approximation (2.30) implicitly assumes that the number of atoms N in the
BEC is very large and hence one can neglect the quantum fluctuations which are charac-
terized by δΨ̂(r, t) and are also referred to as the “quantum depletion” of the condensate.
Accordingly, the mean-field ansatz is particularly useful for large atom numbers but be-
comes invalid if quantum fluctuations are important.

In order to derive the evolution of the condensate wave function ψ(r, t) one evaluates the
Heisenberg equations for the field operators

ih̄∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ] , (2.31)

where Ĥ is the many-body Hamiltonian (2.5), by substituting Eq. (2.30). This yields the
celebrated Gross-Pitaevskii equation (GPE)

ih̄∂tψ(r, t) =
[
− h̄2

2m
∇

2 +Vlat(r)+Vext(r)
]

ψ(r, t) . (2.32)

Gross [103,104] and Pitaevskii [166] independently found the above Eq. (2.32) and based it
on the assumptions that the numbers of atoms N � 1 in the BEC is much larger than one.10

The GPE and can be used to explore the macroscopic behavior of the system, characterized
by variations of the order parameter over distances larger than the mean distance between
atoms.

For deep lattices one can apply the same tight-binding approximation as in the quantum
case (2.8), namely by expanding the condensate function ψ(r, t) in the basis of the Wannier-
functions w0(r− ri) which are localized at the lattices site j and correspond to the lowest
lying orbital

ψ(r, t) = ∑
i

Ai(t)w0(r− ri) . (2.33)

Keeping only the next-neighbor contributions to the coupling and the on-site contributions
for the interactions one arrives again at the DNLS described by Eqs. (2.27) and (2.29).

10Since the derivation starts from Eq. (2.5) it is implicitly assumed, that the relevant inter-atomic interaction
are two-body processes, characterized by the s-wave scattering length as.
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2.5. Applications of the Bose-Hubbard Hamiltonian

Figure 2.3.: Various physical systems captured by the BHH and DNLS (from left): Coupled Joseph-
son Junctions with the geometry of periodically repeated Sierpinski gaskets, superconducting metal
is Pb (clear) while the normal metal is Cu (dark) taken from [126]; array of coupled nonlinear
waveguides taken from [133], array of coupled micro-cantilevers taken from [95].

2.5. Applications of the Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian and its semiclassical limit, the DNLS, find applications in
a variety of physical systems that we discuss here. We also present a brief overview of the
basic literature while publications that are relevant to the specific problems treated in this
thesis will be cited in the corresponding chapters.

A substantial part of the BHH literature concerns ultra-cold atoms in (optical) lattices,
which results from the currently large momentum in the field of BEC. Since the exact quan-
tum treatment is often limited due to computational restrictions many studies are using nu-
merical methods like Monte-Carlo simulations [206] or renormalization group techniques
[184] and the mean-field Gross-Pitaevskii equation. For a recent review see Ref. [152].

Another bosonic system captured by the BHH are Josephson Junctions arrays (JJA) like
the one presented in the left panel of Fig. 2.3. In contrast to the neutral atoms in a BEC, here
Cooper-pairs of two electrons form the (now charged) bosons. The predominant interaction
described by U is therefore the Coulomb repulsion while k represents the Josephson energy
EJ (see for example Ref. [39] for a detailed description of JJA and the BHH). Findings
include superconducting-insulator transitions or Josephson oscillations [81].

The BHH is also used in (quantum) chemistry where it describes bond excitations in
small molecules [187] and biological polymers [82]. Here k accounts for the electromag-
netic and mechanical coupling of adjacent atoms in the molecule while U represents the
anharmonic softening of the bonds under extension [13,21,187]. The numerous studies in-
clude both semiclassical [76] as well as quantum [49,64,181,214] treatment of the problem
and for a recent review see Ref. [75]. Similarly, the BHH can be used to describe the non-
linear vibrations of micro-cantilever arrays [182] (see middle panel of Fig. 2.3) that were
recently used together with BEC confined in magnetic micro-traps [200].

Finally, the field of nonlinear optics must be mentioned where the DNLS is used to
describe propagation of light in arrays of nonlinear waveguides (see right panel of Fig. 2.3)
such as linearly coupled, non-dispersive, single-mode Kerr fibers [22, 87]. For a recent
review see Ref. [111].
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

2.6. The Bose-Hubbard trimer

In this section we describe in detail the model used mainly in thesis, which is a three-site
ring-lattice, termed BHH trimer. We start with the quantum model and then turn to the
classical dynamics.

2.6.1. Fock-space representation of the BHH

As one readily verifies the Bose-Hubbard Hamiltonian (2.10) has two constants of motion
[21, 76], namely the energy E = H and the total number N of particles

N =
f

∑
i=1

ni . (2.34)

Therefore we can choose as a basis the Fock number states |n1,n2, . . . ,n f 〉, where the num-
ber of atoms in each site ni is well-defined

{|N,0, . . . ,0︸ ︷︷ ︸
f−times

〉, |N−1,1,0, . . . ,0〉 , |N−1,0,1,0, . . . ,0〉 , . . . , |N−1,0, . . . ,0,1〉 ,

|N−2,2,0, . . . ,0〉 , , . . . , |N−2,1,1,0, . . . ,0〉 , . . . , |0, . . . ,0,N〉} (2.35)

and the total number of particles is N = const. The action of the annihilation (creation)
operators b̂i (b̂†

i ) on the Fock states is given by

b̂i
∣∣n1,n2, . . . ,ni, . . . ,n f

〉
=

√
ni|n1,n2,ni−1, . . . ,n f 〉 (2.36)

b̂†
i

∣∣n1,n2, . . . ,ni, . . . ,n f
〉

=
√

ni +1|n1,n2,ni +1, . . . ,n f 〉 . (2.37)

For vanishing coupling strength k = 0, the BHH (2.10) is already diagonal in this basis. In
the opposite limit U = 0 the BHH can be diagonalized exactly by a unitary transformation
to the Bloch eigenstate basis [71]. Using elementary combinatorical considerations of how
to distribute N indistinguishable particles over f wells one finds that the dimension N of
the corresponding Hilbert-space is possibly large but finite [21, 71]

N =
(N + f −1)!
N! ( f −1)!

. (2.38)

On the one hand, this allows for a full quantum treatment of the problem, i.e. no truncation
of the Hilbert-space is necessary. On the other hand, the rapid increase of the dimension
N often restricts the study to systems of few sites and a small number N of bosons due to
computational limitations.11

11If exact diagonalization is not required, one can study larger systems by using numerical methods like
Monte-Carlo simulations [206] or renormalization group techniques [184].
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2.6. The Bose-Hubbard trimer

v2 v3

v1
k k

k

Figure 2.4.: Left: Schematic plot of the Bose-Hubbard trimer as a three-site ring-lattice. The cou-
pling strength between sites is parameterized by ki = k while the on-site potential is vi = 0. The
on-site interaction is given by Ui = U (not shown). Right: The optical potential Vlat resulting from
the interference of a plain wave with an Laguerre-Gauss laser mode. Figure taken from [3].

In this context, the two-site system (dimer) has been analyzed thoroughly from both
the semiclassical [76, 202] and the purely quantum viewpoint [21, 94, 128]. These inves-
tigations have revealed many interesting phenomena like the onset of π-phase oscillations,
symmetry-breaking, and self-trapping of boson population, the latter being observed exper-
imentally in Ref. [1].

Since the BHH has two constants of motion, the dimer – having two degrees of freedom
– is classically integrable. Notwithstanding, the plethora of fascinating results adds to the
motivation to go beyond the dimer and consider new scenarios where even richer dynamics
should be observed. In this respect, the trimer opens new and exciting opportunities, since
the addition of a third site leads to (classically) chaotic behavior. Chaoticity is abundant in
nature, but more importantly leads to universal behavior and is therefore a major ingredient
in the dynamical evolution. Consequently, the study of the trimer will pave the way for
understanding longer (i.e. also classically chaotic) lattices.

In the rest of this thesis we will consider mainly a three-site ring-lattice as the one
schematically depicted in the left panel of Fig. 2.4. Unless stated otherwise we will con-
sider vanishing on-site potentials vi = 0. The couplings ki j between neighboring sites are
assumed to be equal ki j = k which applies also to the on-site interaction Ui = U (see Sub-
section 2.2.1 for a discussion of the parameters). From Eq. (2.10) we then obtain

Ĥ =
U
2

3

∑
i=1

n̂i (n̂i−1)− k ∑
〈i, j〉

b†
i b j . (2.39)

Such ring-lattices are experimentally feasible with current optical methods where the op-
tical potential is created by letting a plane wave interfere with the so-called Laguerre-
Gauss laser modes as described in [3] (see right panel of Fig. 2.4) but also micro-traps
[108, 129, 159, 175] are promising candidates for realizing these small systems.
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2. Interacting Bosons on a Lattice and the Bose-Hubbard Hamiltonian

2.6.2. Hilbert-space of the symmetric BHH trimer

The 3-fold permutation symmetry of our trimer model (2.39) leads to a separation of the
Hilbert-space in three independent subspaces [71], which are the two singlet (symmetric
and completely antisymmetric) and doublet subspace. This allows us to reduce the dimen-
sionality N ∝ N2 (see Eq. (2.38)) of the Hilbert-space by restricting the calculations to one
of the subspaces.

We choose the symmetric one which leads to a reduction by a factor of approximately six.
The origin of this number becomes clear if one realizes that the eigenvalues of the uncoupled
homogeneous trimer are most likely six-fold degenerate which occurs if n1 6= n2 6= n3 6= n1.
If two boson numbers agree (e.g. n1 = n2 6= n3) the corresponding degeneracy is three-
fold while the state of equal occupation (exists only if mod(N,3) = 0) n1 = n2 = n3 is not
degenerate. Following Ref. [71] we define the orthonormal basis

{|n1,n2,n3〉S}n1≤n2≤n3, n1+n2+n3=N (2.40)

through the basis states ( the subscript S indicates the symmetric sub-space)

|n1,n2,n3〉S =
1

αS
∑
P
|P(n1),P(n2),P(n3)〉 (2.41)

where P runs over the permutations of (n1,n2,n3) and

αS(n1,n2,n3) =
√

6 if n1 6= n2 6= n3
αS(n1,n2,n3) =

√
12 if n1 = n2 6= n3 or n1 6= n2 = n3 or n1 = n3 6= n2

αS(n1,n2,n3) = 6 if n1 = n2 = n3
(2.42)

The main motivation to use the symmetric subspace is of a computational nature as it allows
us to consider systems of up to several hundred bosons. Of course, we have checked that
this procedure does not affect the results. Indeed, when analyzing the spectral statistics pre-
sented in Section 3.1 it is indispensable to perform the analysis for the individual subspace
in order to get a meaningful result and eliminate inherent degeneracies (see also Appendix
A).

2.6.3. Classical dynamics

Upon taking the semiclassical limit of the BHH, the system of bosons on the lattice is
described by f nonlinear oscillators that are linearly coupled. As in the quantum case the
classical Hamiltonian (2.23,2.27) has f degrees of freedom and two constants of motion,
one of them being the energy Ẽ = H̃ . The quantum mechanical conservation of the particle
number N translates into conservation of total action I = ∑i Ii or respectively total oscillator
strength ∑ |Ai|2.
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2.6. The Bose-Hubbard trimer

a) b) c)

Figure 2.5.: Poincaré sections of the phase space belonging to the classical trimer for N = 1, k = 1
and energy Ẽ = 0.5 and different parameter values a) λ = 1.33, b)λ = 0.6, c) λ = 0.44. On the y-axis
we plot the action I3 while on the x-axis the difference ϕ2−ϕ3 (in units of π) is plotted. This figure
is a courtesy of Gim Seng Ng [155].

The classical dynamics depends both on the scaled energy Ẽ = E/ŨN and the dimen-
sionless parameter λ = k/Ũ [71, 92, 154, 187, 202]. For λ → 0 the interaction term domi-
nates and the system behaves as a set of uncoupled sites. This limit is also known as the
local-mode picture [21] while the opposite case, i.e. λ → ∞, is called the normal-mode
picture [76, 187, 214] where the kinetic term is the dominant one. In both limits the motion
is integrable while for intermediate values of λ and a number of sites f > 2 the it has a
chaotic component [64].

We will investigate the classical dynamics in more detail at the beginning of the next
chapter, as well as in Section 4.4, where we also compare it to quantum dynamics, and
Section 5.4. In Fig. 2.5 we give some examples of the classcal dynamics (2.25) of the
trimer, by plotting Poincaré sections of the phase space for constant energy Ẽ and various
values of the parameter λ.
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3. Parametric Bose-Hubbard Hamiltonians:
Spectra and Eigenfunctions

Consider a system whose Hamiltonian H (I,ϕ;X) depends not only on a set of canonical
variables (I,ϕ) but also on a parameter X which in principle might be time-dependent, i.e.
X = X(t). Such parametrically driven Hamiltonians [211] frequently appear in various
fields like mesoscopic electronic, atomic and molecular physics.

One of the paradigms of parameter dependent Hamiltonians is the so-called piston model
[52]. Here X(t) denotes the position of a large object (the piston) that is located within an
enclosure and is only weakly perturbed by the remainder of the system, e.g. a gas particle,
described by the variables (I,ϕ), moving inside the enclosure. In molecular physics, for
example, X(t) is associated with the motion of the nuclei in a molecule and the electronic
degrees of freedom represent the weak perturbation. As X(t) is changing (for a fixed con-
figuration of the nuclei) the electronic system undergoes radiationless transitions [139]. In
mesoscopic physics, the piston model has recently been realized using electrons moving
in a quantum dot where X(t) parameterizes the dot’s shape, which is determined by the
applied gate voltages. By (periodically) changing the shape of the dot one can study for
example the dissipation of energy into the system.

Yet a different application of parametric Hamiltonians is associated with a charged parti-
cle moving inside a ring (Aharonov-Bohm topology). Here, the parameter X(t) represents
a perpendicular magnetic flux that is concentrated the ring’s hole. According to Faraday’s
law, the time-derivative of the flux Ẋ(t) = V is the electromotive force induced in the loop
leading to a current I that flows inside the ring. Inserting Ohm’s law V = RI (where R is the
resistance) into Joule’s law dE/dt = V I = 1/RV 2 we find that the conductance G = 1/R is
proportional to the dissipated energy. Thus, in such a setup G can be measured without the
need to open the system.

Though the above examples are mainly treated using a single-particle picture, it is ap-
parent that the concept of parametric Hamiltonians is fundamental in physics, including
many-body systems. In this respect, (ultra-)cold atoms loaded in optical lattices [124] pro-
vide an excellent framework to study driven interacting systems and compare the theoretical
predictions to experimental results, identify limitations and propose new theoretical meth-
ods.

In our analysis of the Bose-Hubbard Hamiltonian (BHH), we choose as a control param-
eter the tunneling strength X = k between neighboring lattice sites (see Chapter 2). We are
interested in the evolution of the boson configuration as k0 → k0 +δk is being varied. Natu-
rally, the first step in the study of the parametric BHH is the case where the perturbation δk
is not time-dependent but constant. Therefore, the topic of the present chapter comprises
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the static properties like spectral statistics, the characteristics of the applied perturbation,
and the parametric evolution of eigenfunctions [114] which will lead the way to study the
quantum dynamics in the coming chapter.

Throughout this work we always assume that the perturbed Hamiltonian H (k) as well as
the unperturbed Hamiltonian H (k0) generate classical dynamics of the same nature, i.e.,
that the perturbation δk = k−k0 is classically small, δk < δkcl. This assures the applicability
of classical linear response theory (LRT). Note, however, that this assumption is not suffi-
cient to guarantee the validity of quantum mechanical linear response theory. Our aim is to
identify the limitations of quantum mechanical LRT, and the applicability of semiclassical
methods. At the same time, we address the implications of classically chaotic dynamics,
and the route to quantum-classical correspondence.

This chapter is structured as follows: in the next section, we analyze the spectral prop-
erties of the Bose-Hubbard Hamiltonian. We then establish a semiclassical connection
between the power spectrum and the quantum mechanical bandprofile of the perturbation
operator and study its statistical properties. In Section 3.2, we revise the banded random
matrix modeling developed by Wigner and motivate an improved random matrix theory
(IRMT) model which takes the structured bandprofile into account [112]. After that we in-
troduce the concept of parametric regimes and demonstrate its applicability in the analysis
of the parametric evolution of eigenstates [59]. In Section 3.6, we present our findings [114]
for the BHH and compare them with the predictions from the Wigner RMT model. We re-
veal the importance of the structured bandprofile of the perturbation operator and show how
it can be included in an infinite order perturbation theory. In the regime of strong perturba-
tions δk, where perturbation theory fails, we apply semiclassical considerations and show
that RMT modeling leads to a strong non-perturbative response effect that differs from the
semiclassical behavior.

3.1. Statistical properties of the BHH: spectra and
bandprofile

In a substantial part of the existing literature (see, for example, Ref. [94]), the Bose-
Hubbard Hamiltonian (2.10) was investigated using a mean-field (classical) picture. In
contrast, quantum mechanical calculations of a BHH are often limited by severe computa-
tional memory restrictions. However, it is possible to treat lattices consisting of a few sites.
In this respect the BHH trimer (see Section 2.6) is especially interesting since the underly-
ing classical dynamics can be chaotic, thus paving the way to understand larger lattices.1

The trimer has been studied quite extensively in the semiclassical regime [46, 77, 92, 110].
Surprisingly enough, the quantum trimer [71, 154] (not to mention larger lattices [135]) is
barely treated. As a matter of fact, the majority of the quantum studies are focused on the
statistical properties of levels [49,64,71] or are limited to the ground state properties of the

1See also Subsection 2.6.1.
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Figure 3.1.: Classical time evolution of N = 230 particles (bosons) in the trimeric BHH for Ũ = 280
and energy Ẽ = 0.26 according to Eq. (2.25). The red line indicates the accessible phase space if all
particles were located on the corresponding site.

BHH [18, 119, 142]. Substantially more insight to this complex quantum system is gained
through the analysis of the eigenstates [114].

In this chapter we study the trimeric BHH model (see Section 2.6) as a control parameter,
the coupling strength between lattice sites: k0 → k0 + δk is changed. In our analysis, we
therefore consider

Ĥ = Ĥ0−δkB̂ , (3.1)

where the coupling operator is
B̂ = ∑

〈i, j〉
b̂†

i b̂ j , (3.2)

and the unperturbed Hamiltonian Ĥ0 is given by Eq. (2.39) with k = k0. Quantum mechan-
ically, we work in the Ĥ0 eigenbasis. In this basis Ĥ0 becomes diagonal, i.e., E0 = E(0)

m δmn

where {E(0)
m } are the ordered eigenvalues and we can write

H = E0−δkB . (3.3)

A fixed assumption of this work is that the perturbation is classically small δk � δkcl,
i.e., the corresponding classical Hamiltonians H0 and H generate dynamics of the same
nature. Below we will concentrate on parameter values, where the classical dynamics is
predominantly chaotic.

As a preliminary step, we determine the regime of classically chaotic motion. Following
Refs. [70, 76, 187] the analysis is based on the nature of the phase space and the power
spectrum C̃(ω) of the perturbation operator B which we will discuss in detail in Subsec-
tion 3.1.2. While regular motion results in isolated peaks in C̃(ω), a continuous (but pos-
sibly structured) power spectrum indicates chaoticity. Accordingly, the classically small-
ness condition δk � δkcl can be operatively defined as the perturbation strength that leaves
C̃(ω) unaffected. We have found that for 0.04 < λ = k/Ũ < 0.2 and in an energy interval
H̃ ≈ 0.26± 0.02 the motion is predominantly chaotic. In the simulations below we will
use k0 ≈ 15, an effective interaction strength Ũ = UN ≈ 280 and the number of particles
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Figure 3.2.: Parametric evolution of the eigenval-
ues Ẽ(0)

n as a function of the parameter λ. The
number of bosons is N = 40 and the effective in-
teraction strength is Ũ = 280. In the main figure
the entire spectrum is plotted while the inset is a
magnification of the small box. One observes a
qualitative change in the spectrum as λ is changed.
See text for details.

N = 230 if not stated otherwise. In this regime, we get δkcl = 20. In Fig. 3.1 we report some
representative trajectories in phase-space that illustrate the ergodic nature of the classical
motion (see also the Poincaré sections in Fig. 2.5).

It is then natural to ask how the classically chaotic behavior is reflected upon quantiza-
tion. As we shall see in the following subsections, chaos manifests itself mainly in two
quantities; the spectral statistics and the averaged profile 〈|Bmn|2〉 of the perturbation oper-
ator.

3.1.1. Energy levels

We start with the discussion of the spectral statistics of the quantum BHH trimer. In Fig. 3.2
we plot the parametric evolution of the eigenvalues Ẽ(0)

n as a function of λ for fixed effective
interaction strength Ũ = 280. From Fig. 3.2 one observes that the spectrum becomes rather
regular for very large λ. Indeed, for λ→∞ a transformation to the local modes of the system
diagonalizes the Hamiltonian and yields an equal spacing of the eigenvalues. In the local-
mode limit, i.e. λ → 0, the eigenvalues of Ĥ0 are obtained immediately from (2.39) and
represent a basically uncorrelated series of numbers. However, in an intermediate λ-regime
one observes a different behavior: the evolution is irregular and the levels seem to repel
each other (see inset). This is a manifestation of the classical chaotic behavior [106, 196].

In order to establish this statement we turn to the statistical properties of the spectra. In
particular, we will study the level spacing distribution P(S) (see Appendix A) where

Sn =
En+1−En

∆(E)
(3.4)

are the level spacings which are unfolded with respect to the local mean level spacing ∆(E).
The level spacing statistics have already been investigated for the chaotic BHH [49, 64, 71,
135] and represent one of the most popular measures used in quantum chaos studies [106,
196]. In this context, it turns out that the sub-h̄ statistical features of the energy spectrum are
“universal”, and obey the predictions of Wigner’s random matrix theory (RMT) [207, 208]
which we will introduce later in Section 3.2. In contrast, non-universal, i.e. system specific,
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features are reflected only in the large scale properties of the spectrum and constitute the
fingerprints of the underlying classical dynamics.

We determine the scaling of the mean level spacing ∆ by using the fact that the Hilbert-
space dimension N grows as N ∝ N2 (see Subsection 2.6.2) while the energy ∆E spanned
by the system is proportional to ŨN× Ẽ, where Ẽ is constant (see Eqs. (2.23) and (2.19)).
Then the global scaling of the mean level spacing should be2

∆∼ ∆E
N

∼ Ũ
N

. (3.5)

In Fig. 3.3 we report spectra for Ũ = 280 and various N. The numerical data are in good
agreement with the theoretical expectation (3.5). We use the spectral data to estimate the
proportionality factor at the energy window around Ẽ = 0.26 where most of our calculations
are done and obtain

∆≈ 1.5
Ũ
N

. (3.6)

Next, we calculate P(S). For chaotic systems the latter follows the so-called Wigner
surmise (see Appendix A)

Pchaotic(S) =
π

2
Se−

π

4 S2
, (3.7)

indicating that there is a linear repulsion between nearby levels. Instead, for generic inte-
grable systems there is no correlation between the eigenvalues and the distribution P(S) is
Poissonian

Pintegrable(S) = e−S . (3.8)

In order to quantify the degree of chaoticity, various phenomenological formulas have been
suggested that interpolate between these two limiting cases like the Berry-Robnik [28] or
the Brody distribution [36]. We focus on the latter which is given by

Pq(S) = αSq e−βS1+q
, (3.9)

2We stress once again, that Ũ has to be kept constant while increasing N. See around Eq. (2.21).
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Figure 3.4.: The level spacing distribution P(S) of the BHH trimer for three representative val-
ues of the dimensionless ratio λ = k/Ũ which controls the underlying classical dynamics: a)
λ = 0.025(k = 7), b) λ = 0.05(k = 14.5), and c) λ = 0.35(k = 100). The red dash-dotted line
corresponds to the Poissonian distribution (3.8) which is expected for integrable systems, the solid
blue line corresponds to the Wigner surmise (3.7) (chaotic systems) while the solid green line rep-
resents the fitted Brody distribution (3.9). In Figure 3.5 we report the fitted Brody parameter q for
various values of λ. The System corresponds to N = 230 bosons and Ũ = 280. The histograms
include the 400 relevant levels around Ẽ = 0.26.

where α = (1 + q)β , β = Γ1+q[(2 + q)/(1 + q)] and Γ is the Gamma function. The two
parameters α, β are determined by the condition that the distribution is normalized with a
mean equal to one [37]. The so-called Brody-parameter q is then obtained from fitting the
Pq(S) to the numerically evaluated level spacing distribution. One readily verifies that for
q = 0, the distribution Pq(S) is Poissonian while for q = 1 it takes the form of (3.7). In
Fig. 3.4 we report the distribution P(S) of the levels in the relevant energy window around
Ẽ = 0.26 together with the fitted Pq for some representative cases of λ.3 One observers
a qualitative change in P(S) as λ is increased from zero. This is in agreement with the
parametric plot of the levels (see Fig. 3.2).

The quantitative analysis is presented in Fig. 3.5 where we plot q against λ which governs
the underlying classical dynamics. For very small and very large λ the Brody parameter is
small indicating classically regular motion while for intermediate values we find q ∼ 1
corresponding to classically chaotic motion. The observed range of large q is in excellent
agreement with the classical analysis that led to a range of 0.04 < λ < 0.2 for the motion to
be predominantly chaotic in the discussed energy window.

3.1.2. The bandprofile

Consider a given ergodic trajectory (I(t̃),ϕ(t̃)) (t̃ = Ũt is the rescaled time) on the energy
surface H̃ (I(0),ϕ(0);k0) = Ẽ like the one shown in Fig. 3.1. We can associate with it a

3We note that for level spacing distribution it is essential [196] to distinguish levels from different symmetry
classes. Here, the statistics is performed over the symmetric singlet states of the BHH. See also Ref. [71]
and Appendix A.
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Figure 3.5.: The Brody parameter q for the BHH plotted against the dimensionless ratio λ which
controls the underlying classical dynamics. The values of q are obtained from fits to Pq(S) around
Ẽ = 0.26 as reported in Fig. 3.4. The System corresponds to N = 230 bosons and Ũ = 280. See text
for details.

stochastic-like variable

F̃ (t̃) =−∂H̃
∂k

(I(t̃),ϕ(t̃);k(t̃)) , (3.10)

which can be seen as a generalized force. For the BHH (3.3) this is simply the perturbation
term F̃ = ∑i6= j

√
IiI j expi(ϕ j−ϕi) which corresponds to a momentum boost since it changes

the kinetic energy [164]. It may have a non-zero average , i.e. a “conservative” part, but
below we are interested only in its fluctuations.

In order to characterize the fluctuations of F̃ (t̃) we introduce the autocorrelation function

C(τ̃) = 〈F̃ (t̃)F̃ (t̃ + τ̃)〉−〈F̃ 2〉 , (3.11)

where τ̃ = Ũτ is a rescaled time. The angular brackets denote an averaging which is either
micro-canonical over some initial conditions (I(0),ϕ(0)) or temporal due to the assumed
ergodicity.

For generic chaotic systems (described by smooth Hamiltonians), the fluctuations are
characterized by a short correlation time τ̃cl, after which the correlations are negligible. In
generic circumstances τ̃cl is essentially the ergodic time. For our model system we have
found τ̃cl ∼ 2π.

The power spectrum of the fluctuations C̃(ω̃) is defined by a Fourier transform:

C̃(ω̃) =
∞Z

−∞

C(τ̃)eiω̃τ̃dτ̃ . (3.12)

This power spectrum is characterized by a cut-off frequency ωcl which is inverse propor-
tional to the classical correlation time

ω̃cl =
2π

τ̃cl

. (3.13)
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Figure 3.6.: The power-spectrum of the classical BHH trimer (2.23) (with f = 3, vi = 0) at energy
Ẽ = 0.26, Ũ = 280, and λ0 = 0.053. The classical cut-off frequency ωcl = ω̃clŨ ≈ 280 is indicated
by perpendicular dashed lines.

The classical power spectrum for the BHH trimer is shown in Fig. 3.6. Indeed, we see
that C̃(ω) has a frequency support which is bounded by ω̃cl ≈ 1 corresponding to ωcl ≈ 280
(indicated by dashed vertical lines in Fig. 3.6). Having a bounded (continuous) support in
C̃(ω) means that the perturbation does not excite all modes of the system but only those
within a finite range.4 These characteristics of the power spectrum are universal for generic
chaotic systems. Finally, we see that within the frequency support the power spectrum C̃(ω̃)
is structured, reflecting system-specific properties of the underlying classical dynamics.

As we explain in detail in Appendix A.2, the classical power spectrum C̃(ω̃) is associated
with the quantum mechanical perturbation matrix B according to the following semiclassi-
cal relation [85, 170]

〈|Bnm|2〉=
N2∆

Ũ 2π
C̃
(

ω =
En−Em

h̄

)
. (3.14)

Hence the matrix elements of the perturbation matrix B are extremely small outside of a
band of width

∆b = h̄ωcl . (3.15)

It is common to define also a dimensionless bandwidth b = ∆b/∆. In the inset of Fig. 3.7 we
show a snapshot of the perturbation matrix |Bnm|2 which clearly exhibits a band-structure.
In the same figure we also display the scaled quantum bandprofile for N = 230. The agree-
ment with the classical power spectrum C̃(ω) is very good. We note that the relation (3.14)
is very robust [59, 112, 114] and holds even for small boson numbers N ≈ 50. Combining
Eqs. (3.6), (3.15) with ω̃cl ≈ 1 (see above) and the definition of b we find for the chaotic
regime around Ẽ = 0.26 that b∼ 0.6N which is confirmed by the numerics.

At the beginning of the section we were asking “Where does the classical chaos appear
in the quantum mechanics?” Up to here we can give the following answer: classical chaos
manifests itself in the spectral statistics and in the appearance of a bandprofile of the pertur-
bation matrix B [59, 112, 114]. It is important to realize that through this type of quantum

4This behavior would be expected for a hard chaotic system where the correlation time τ̃clvanishes.
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Figure 3.7.: The bandprofile (2πŨ/N2∆) · |Bnm|2 versus ω = (En −Em)/h̄ is compared with the
classical power spectrum C̃(ω). The number of particles is N = 230 and λ0 = 0.053. Inset: a
snapshot of the perturbation matrix B.

classical correspondence (QCC), chaos introduces an additional energy scale in the quan-
tum system. Hence we end up with two distinct energy scales. One is obviously the mean
level spacing (see above)

∆ ∝ Ũ/N , (3.16)

while the other one is the bandwidth

∆b = b∆ ∝ Ũ . (3.17)

The latter energy scale is also known in the corresponding literature as the “non-universal”
energy scale [26], or in the case of diffusive motion, as the Thouless energy [117].5 One has
to notice that deep in the semiclassical limit h̄ → 0 (N → ∞) these two energy scales differ
enormously from one another. We shall see in the following sections and chapters that this
scale separation has dramatic consequences on the theory of driven quantum systems.

3.1.3. Distribution of couplings

We further investigate the statistical properties of the matrix elements Bnm of the perturba-
tion matrix by studying their distribution. RMT assumes that upon appropriate “unfolding”
they must be distributed in a Gaussian manner. The unfolding aims to remove system spe-
cific properties and to reveal the underlying universality. It is carried out by normalizing the
matrix elements with the local standard deviation σ =

√
〈|Bnm|2〉 related through Eq. (3.14)

with the classical power spectrum C̃(ω).
The existing literature is not conclusive about the distribution of the normalized matrix

elements w = Bnm/σ. Specifically, Berry [24] and more recently Prosen [168,170], claimed
that P (w) should be Gaussian. On the other hand, Austin and Wilkinson [14] have found

5The dimensionless parameter b scales like b ∝ h̄−(d−1) and in the frame of mesoscopic systems is recog-
nized as the dimensionless Thouless conductance [117].
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Figure 3.8.: Distribution of rescaled matrix elements w around Ẽ = 0.26 rescaled with the averaged
bandprofile. The dashed red line corresponds to the standard normal distribution while the circles (◦)
correspond to a best fit from Eq. (3.18) with a fitting parameter N = 342. The system corresponds
N = 230, Ũ = 280.

that the Gaussian is approached only in the limit of high quantum numbers while for small
numbers, i.e., low energies, a different distribution applies, namely

Pcouplings(w) =
Γ(N

2 )
√

πNΓ(N−1
2 )

(
1− w2

N

)(N−3)/2

. (3.18)

This is the distribution of the elements of an N-dimensional vector, distributed randomly
over the surface of an N-dimensional sphere of radius

√
N. For N → ∞ this distribution

approaches a Gaussian.

In Fig. 3.8 we report the distribution P (w) for the perturbation matrix B. The dashed
line corresponds to a Gaussian of unit variance while the circles are obtained by fitting
Eq. (3.18) to the numerical data using N as a fitting parameter. In this case the fit yielded
N = 342 and accordingly the latter two curves are virtually identical. The large N value
implies that the system should be located already deep in the semiclassical regime and is in
agreement with the correspondence with the findings of the previous section. Interestingly,
also for smaller system sizes the obtained parameter N is quite high. We observe that the
Gaussian fairly resembles our numerical data but there are deviations especially for matrix
elements close to zero. We attribute these deviations to the existence of small stability
islands in the phase space. Trajectories started in those islands cannot reach the chaotic sea
and vice versa. Quantum mechanically, the consequence of this would be vanishing matrix
elements Bnm which represent the classically forbidden transitions.
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3.2. Random matrix theory modeling

More than 50 years ago, E. P. Wigner [207,208] proposed a simplified model with a Hamil-
tonian given by Eq. (3.3) and B being a banded random matrix [83, 84, 96]. It is known as
the Wigner banded random matrix model (WBRM). This approach is attractive both ana-
lytically and numerically. Analytical calculations are greatly simplified by the assumption
that the off-diagonal terms can be treated as independent random numbers. Also from a
numerical point of view it is quite a tough task to calculate the true matrix elements of
B. It requires a preliminary step where the chaotic Ĥ0 is diagonalized and limited mem-
ory restricts the matrix size. For the Bose-Hubbard Hamiltonian we were able to handle
matrices of final size N = 30,000 maximum. This should be contrasted with the WBRM
simulations, where using self-expanding algorithm [57, 112, 120] we were able to handle
system sizes up to N = 1,000,000 along with significantly reduced CPU time. We would
like to stress, however, that the underlying assumption of the WBRM, namely that the off-
diagonal elements are uncorrelated random numbers, has to be treated with extreme care.
The applicability of this model is therefore a matter of conjecture which we will test in the
following.

In fact, the WBRM model involves additional simplifications, namely that the diagonal
matrix E0 has elements which are the ordered energies {En}, with mean level spacing ∆ 6

and the perturbation matrix B has a rectangular bandprofile of bandwidth b. Within the
band 0 < |n−m| ≤ b the elements are independent random variables given by a Gaussian
distribution with zero mean and a variance σ2 = 〈|Bnm|2〉while outside the band they vanish
(see Fig. 3.9 for an illustration).

Given the bandprofile, we can use Eq.(3.14) in reverse direction to calculate the correla-
tion function C(τ). For the WBRM model we get

C(τ) =
∞Z

−∞

dEk g(Ek)|Bnm|2e−iEkτ/h̄ =
σ2

∆

∆bZ
−∆b

dEk e−iEkτ/h̄

= 2σ
2bsinc

(
τ

τcl

)
(3.19)

where τcl = h̄/∆b. Thus, there are three parameters (∆,b,σ) that define the WBRM model.

6This equal spaced diagonal matrix is also known as a “picket-fence” Hamiltonian.
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While the WBRM model assumes that B has a rectangular bandprofile, a simple inspec-
tion of Fig. 3.7 shows that this is not the case for our BHH model (2.39). We eliminate this
simplification by introducing a RMT model that is even closer to the dynamical one. To
this end, we randomize the signs of the off-diagonal elements of the perturbation matrix B
keeping its band-structure intact. This procedure leads to a random model that exhibits only
universal properties but lacks any semiclassical limit. We will refer to it as the improved
banded random matrix model (IRMT).

3.3. Parametric evolution of eigenfunctions

As we change the parameter δk in the Hamiltonian Eq. (3.3), the instantaneous eigenstates
{|n(k)〉} evolve and undergo structural changes. In order to finally understand the actual
quantum dynamics, where k = k(t) is time-dependent, it is important to understand these
structural changes. This leads to the introduction of the “kernel”

P(n|m) = |〈n(k0 +δk)|m(k0)〉|2 , (3.20)

which can be interpreted in two ways as we schematically depict in Fig. 3.10. If regarded as
a function of m, P(n|m) represents the overlap of a given perturbed eigenstate |n(k0 +δk)〉
with the eigenstates |m(k0)〉 of the unperturbed Hamiltonian. The averaged distribution P(r)
is defined by r = n−m, and averaging over several states with roughly the same energy En
yields the averaged shape of eigenfunctions (ASoE). Alternatively, if regarded as a function
of n and averaging over several states around a given energy Em, the kernel P(r) represents
up to some trivial scaling and shifting the local density of states (LDoS):

P(E|m) = ∑
n
|〈n(k)|m(k0)〉|2δ(E−En) . (3.21)

Its lineshape is fundamental for the understanding of the associated dynamics, which we
will address in the next chapter, since its Fourier transform is the so-called “survival prob-
ability amplitude”. In the following we will focus on the LDoS scenario.

The profile P(r) undergoes a set of structural changes as a function of growing δk. We
first summarize the generic picture, which involves the parametric scales δkqm and δkprt, and
the approximations PFOPT, Pprt, and Psc. Then we discuss how to determine these scales, and
what these approximations are.

• The standard perturbative – or first order perturbation theory (FOPT) – regime is
defined as the range δk < δkqm where we can use FOPT to get an approximation that
we denote as P()≈ PFOPT.

• The extended perturbative regime is defined as the range δkqm < δk < δkprt where we
can use perturbation theory (to infinite order) to get a meaningful approximation that
we denote as P()≈ Pprt. Obviously Pprt reduces to PFOPT in the FOPT regime.

38



3.4. Approximations for the profile P(n|m)
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Figure 3.10.: Schematic representation of the two notions of the kernel P(n|m). Left: projection of
one perturbed eigenstate |n(k0 + δk)〉(blue level) on the basis |m(k0)〉 of the unperturbed Hamilto-
nian. Averaging over several |n′〉 states around energy En yields the averaged shape of eigenfunctions
(ASoE). Right: alternatively, if P(n|m) is regarded as a projection of one unperturbed eigenstate |m〉
(blue level) on the basis |n〉 of the perturbed Hamiltonian and averaged over several states around
Em , it leads to the local density of states (LDoS).

• The non-perturbative regime is defined as the range δk > δkprt where perturbation
theory becomes non-applicable. In this regime we have to use either RMT or semi-
classics in order to get an approximation that we denote as P()≈ Psc.

3.4. Approximations for the profile P(n|m)

The simplest case is obviously the FOPT regime where, for P(n|m), we can use the standard
textbook approximation PFOPT(n|m)≈ 1 for n = m, while

PFOPT(n|m) =
δk2 |Bmn|2

(En−Em)2 , (3.22)

for n 6= m. If the matrix elements outside of the band vanish Bmn = 0 (as in the WBRM
model) then PFOPT(r) = 0 for |r|> b. To find the higher order tails (outside of the band) we
have to go to higher orders in perturbation theory. The above approximation (3.22) applies
as long as only nearest-neighbor levels are mixed by the perturbation, i.e. δk < δkqm, where

δkqm = ∆/σ . (3.23)

If δk > δkqm but not too large then we expect that several levels are mixed. This leads to a
non-perturbative “core” of width Γ which contains most of the probability and a tail region
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which is still described by FOPT while outside of the bandwidth the tails decay faster than
exponentially. This is a non-trivial observation which can be justified by using perturbation
theory to infinite order. It turns out that the non-perturbative mixing on the small scale
of the core does not affect the long-range transitions [56]. Therefore we can argue that a
reasonable approximation is [59]

Pprt(n|m) =
δk2 |Bmn|2

(En−Em)2 +Γ2 , (3.24)

where the core-width Γ is evaluated by imposing normalization of Pprt(n|m). In the case of
the WBRM model (flat bandwidth) we have

Γ =
(

σδk
∆

)2

×∆ =
(

δk
δkqm

)2

×∆ . (3.25)

and Pprt(n|m) is the well-known Wigner Lorentzian [96, 207, 208]. In the general case the
profile P(n|m) can be described as a “core-tail” structure. For non-interacting systems with
chaotic classical limit, recent studies [56, 59] indicated that the above scenario (based on
random matrix modeling) leads to a fairly good description of the kernel. Specifically, it
was found [56] that the core-width scaled as

Γ∼ δkα with 1 < α≤ 2 . (3.26)

This generalization of Eq. (3.25) defines the upper and the lower bound of the exponent
α. In order to derive this result one assumes a structureless core (i.e. only one scale Γ is
involved) which contains basically the entire probability.

The above approximation (3.24) makes sense only as long as we can still determine a
core-tail structure, i.e. as long as Γ(δk) < ∆b. This expression assumes that the bandwidth
∆b is sharply defined, as in the WBRM model. By elimination this leads to the determina-
tion of δkprt, which in case of the WBRM model is simply

δkprt =
√

b δkqm ∼
h̄

τcl

√
C(0)

. (3.27)

In more general cases the bandwidth is not sharply defined. Then we have to define the
perturbative regime using a practical numerical procedure. The natural definition that we
adopt is as follows. We calculate the spreading δE(δk), which is a linear function (see
also the following section). Next we calculate δEprt(δk), using Eq.(3.24)). This quantity
always saturates for large δk because of having finite bandwidth. We compare it to the
exact δE(δk), and define δkprt, for instance, as the 80% departure point.

What happens if perturbation theory completely fails? In the WBRM model the LDoS
becomes semicircle [96, 207, 208]:

Psc(n|m) =
1

2π∆

√
4−
(

En−Em

∆

)2

. (3.28)
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Figure 3.11.: The parametric evolution of eigenstates of a WBRM model with σ = 1 and b = 50:
(a) standard perturbative regime corresponding to δk = 0.01, (b) extended perturbative regime with
δk = 2 (c) non-perturbative (ergodic) regime with δk = 12 and (d) localized regime with δk = 1. In
(a-c) the mean level spacing ∆ = 1 while in (d) ∆ = 10−3. The bandwidth ∆b = ∆×b is indicated in
all cases. In (b) the blue dashed line corresponds to a Lorentzian with Γ ≈ 16 � ∆b while in (a) we
have Γ≈ 10−4 � ∆ which therefore reduces to the standard FOPT result.
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If the perturbation strength is increased even further, the WBRM model displays a fourth
regime which goes beyond the generic picture and we mention it for completeness only. It
is the so-called “localization regime” which is found in the case of for δk > δkloc where

δkloc = b3/2
δkqm . (3.29)

In this regime it is important to distinguish between the non-averaged P(n|m) and the aver-
aged P(r) because the eigenfunctions are non-ergodic but rather localized. This localization
is not reflected in the LDoS which is still a semicircle. A typical eigenstate is exponentially
localized within an energy range δEξ = ξ∆ much smaller than δEcl. The localization length
is ξ ≈ b2. In actual physical applications it is not clear whether there is such a type of
localization. The above scenario for the WBRM model is summarized in Fig. 3.11 where
we plot P(n|m) in the various regimes. The localized regime is not an issue in the present
work and therefore we will no further be concerned with it. Instead, we will now discuss
the non-perturbative regime for dynamical models.

3.5. Classical profile and quantum classical
correspondence

For systems that have a semiclassical limit we expect a qualitatively different behavior in the
non-perturbative regime. Due to the strong perturbations many levels are mixed and hence
the quantum nature becomes “blurred”. We can then approximate the spreading profile by

Psc(n|m) =
Z dI dϕ

(2πh̄)d ρn(I,ϕ)ρm(I,ϕ) , (3.30)

where ρm(I,ϕ) and ρn(I,ϕ) are the Wigner functions that correspond to the eigenstates
|m(k0)〉 and |n(k)〉 respectively. In the strict classical limit ρ can be approximated by the
corresponding micro-canonical distribution ρ ∝ δ(E−H (I,ϕ)) which determines the en-
ergy surface E. The resulting classical LDoS profile Pcl(n|m) is obtained by its projection
onto the energy surfaces En of the perturbed system (and analogously for the ASoE). This
is illustrated in Fig. 3.12 where the perturbed energy surfaces are depicted as black concen-
tric circles while the initial preparation E0 corresponds to the red circle.7 The overlap of
the red and the black circles determines the classical profile Pcl(n|m). One expects a large
overlap for tangential (singular) intersections while for larger angle (simple) intersections
the overlap will be small. We note that outside the region indicated by blue vertical dashed
lines the profile should vanish, displaying a sharp cut-off. This has to be seen in contrast
to the quantum profile where these classically forbidden regions can be accessed since the
Wigner functions possess a transversal width and thus smooth the edges of the quantum
profile.

7Of course, in the classical system the surfaces are dense in the phase space and not separated as in the
cartoon.
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Figure 3.12.: Phase space illustration of the en-
ergy surfaces contributing to the classical profile
Pcl(n|m): the initially occupied energy surface Em

(red circle) is projected onto the energy surfaces
En of the perturbed Hamiltonian H . The classi-
cally forbidden region is outside the cut-off indi-
cated by the blue vertical dashed lines. See text
for details.

In order to calculate the profile Pcl(n|m) in practice, i.e., to evaluate the distribution of
the projected energies En one has to “fill” the initial energy shell Em. This can be either
done by generating a large set of initial conditions fulfilling H0(I,ϕ) = Em or, if the sys-
tem is ergodic, by propagating one such initial condition for a sufficiently long time under
H0. The latter method will be used later in the chapter, leading to the fluctuating energy
H (I(t),ϕ(t)) = E(t).

Irrespective of these structural changes of the spreading profile discussed above, it can
be proved [45, 136] that the variance of the LDoS

δE =
√

∑
n

P(n|m)(E(0)
m −En)2 (3.31)

of P(r)is strictly linear and given by the expression

δE(δk) =
√

C(0) δk ≡ δEcl . (3.32)

The only assumption that underlies this statement is δk � δkcl and reflects the linear de-
parture of the energy surfaces. In order to see the above relation (3.32) we calculate the
variance δE2 of P(n|m) using the first two moments of the Hamiltonian in the unperturbed
basis

δE2 = 〈m|Ĥ2|m〉−〈m|Ĥ|m〉2 = δk2 [〈m|B̂2|m〉−〈m|B̂|m〉2
]

= δk2
[
∑
n
|Bnm|2−|Bmm|2

]
. (3.33)

In other words, the quantum mechanical variance δE2 is determined solely by the bandpro-
file |Bnm|2. On the other hand, the bandprofile is given by the semiclassical relation (3.14)
leading to (3.32). As a consequence the variance δE2 of the quantum and the classical
spreading profile are identical irrespective of the different nature of the profile P(n|m).

This behavior is the so-called restricted quantum-classical correspondence (QCC) [59]
because it applies only to the second moment δE2 of the energy spreading. In contrast, if
the entire profiles P(n|m) and Pcl(n|m) match we use the term detailed QCC .
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Figure 3.13.: The kernel P(n|m) of the BHH plotted as a function of the perturbed energies En

(LDoS representation) and for various perturbation strengths δk > δkqm. In the lower plane we
report the parametric evolution of the energy levels within the bandwidth ∆b ≈ 280. The energy
width Γ is shown (bold line) as a function of δk. The averaged shape of eigenfunctions is given
by the same kernel P(n|m) and is obtained by just inverting the energy axis. Here, N = 70, and
λ0 = 0.053.

3.6. The P(n|m) for the Bose-Hubbard Hamiltonian

Does our BHH model follow the same scenario or will the interatomic interactions affect the
shape of P(n|m)? An overview of the parametric evolution of the averaged P(n|m) is shown
in Fig. 3.13. Beginning as a delta function for δk = 0, the profile P(n|m) starts to develop
a non-perturbative core as δk > δkqm, which eventually spills over the entire bandwidth ∆b.
The other striking feature is the appearance of sidebands in the profile. In the following we
present a detailed analysis of the various parametric regimes.
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3.6.1. The perturbative regimes

We start with the discussion of the perturbative regimes; the corresponding data are pre-
sented in Figs. 3.14a, b where we show P(n|m) for the BHH and the IRMT model together
with the perturbative profile Pprt(n|m) obtained from Eqs. (3.22) and (3.24). All three curves
show an excellent agreement both in the standard and extended perturbative regime.8

At the same time one observes the appearance of pronounced sidebands in the profile
P(n|m). They originate from the structure in the energy landscape of the perturbation ma-
trix B as can be verified by direct inspection of Fig. 3.7. Formally, this can be seen from
the perturbation theory where the information about the bandprofile enters through the nu-
merator in Eqs. (3.22) and (3.24). Consequently, the line-shape of the averaged wave-
function P(n|m) is different from Lorentzian (see Fig. 3.14b) which would be expected for
the WBRM model that is characterized by a flat bandprofile. Still, the general features of
Pprt(n|m) , i.e. the core-tail structure, can be detected.9

In order to quantitatively characterize the profile P(n|m) of the BHH model we will
employ various measures. Our first candidate is the energy spreading δE which is plotted in
Fig. 3.15a as a function of the perturbation strength δk. Interestingly, the structural changes
of the profile P(n|m) are not reflected at all in the spreading δE. On the other hand, this
should not be too surprising since we have found an analytical expression (see Eq. (3.33))
indicating that the standard deviation δE of the LDoS profile increases linearly with δk (the
dashed black line has slope one and is drawn to guide the eye). Even more, we could show
that δE should be equal to the classical spreading δEcl (blue line). This is confirmed by
the numerics and represents a manifestation of the above mentioned restricted QCC which
persists throughout the regimes.

In order to detect the appearance of a core we have to inquire a measure that is sensitive
to the structure of the profile like the core-width Γ. Looking at the corresponding curve
(orange line) we see that the core is initially below the mean levels spacing ∆ and one order
of magnitude smaller than the energy spreading δE. As soon as we enter the extended
perturbative regime, the core grows following a power-law

Γ ∝

(
δk

σ

∆

)α

×∆ with α = 1.9±0.1 . (3.34)

Our numerical data are thus in agreement with the theoretical prediction of Eq. (3.26). The
dash-dotted line in Fig. 3.15 is drawn to guide the eye and has slope two. In the following
we will assume α = 2.

Next, we determine the borders δkqm, δkprt of the BHH model. The former is defined by
the condition Γ = ∆, i.e., the core-width to be of the size of the mean level spacing. Inserting
Eqs. (3.5) and (3.14) into this condition we get

8We note that in the perturbative regimes, the RMT strategy fails in the far tails regime ∆×|r| > ∆b where
system specific interference phenomena become important (not shown).

9In a sense, Wigner’s Lorentzian (3.24) is a special case of core-tail structure.
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Figure 3.14.: The quantal profile P(n|m) as a function of En−E(0)
m for the BHH model is compared

with Pprt and with the corresponding PRMT of the IRMT model. The perturbation strength δk is in
(a) standard perturbative regime δk = 0.05, (b) extended perturbative regime δk = 0.3 and (c) non-
perturbative regime δk = 10. The system corresponds to N = 230, Ũ = 280 and k0 = 15. In the lower
plot the classical LDoS profile Pcl is represented by a blue line. Here δkqm = 0.09 and δkprt = 1.02.

δkqm ∝
Ũ

N3/2 . (3.35)

From the above discussion it should be clear that the notion of a core-width Γ is meaningful
only as long as we have Γ < ∆b, i.e. as long as we can distinguish a core-tail structure. By
using this condition we determine the perturbative border δkprt to be
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δkprt ∝
Ũ
N

. (3.36)

The numerical data for these scalings are reported in Fig. 3.16 and a nice agreement with
the theoretical expectation is observed.10

Although the above calculations have been performed for the case f = 3 they can be
carried over to an arbitrary number of sites f . To this end, we recall that the Hilbert space
dimension N grows as N ∼ N f−2 (see Eq. 2.38) while the energy is E = const.× ŨN.
Accordingly, the mean level spacing behaves as ∆ ∼ Ũ/N f−2. With the standard deviation
σ of matrix elements Bnm being11 σ = N

√
∆/Ũ , we find

δkqm ∝
Ũ

N f /2 . (3.37)

In order to calculate δkprt we insert this result into (3.25) and get back Eq. (3.36), i.e. for
larger lattices we expect a growing extended perturbative regime at the cost of a decreasing
FOPT regime.

As mentioned above, we can alternatively determine δkprt as the perturbation strength
where δEprt deviates from the linearly growing δE. In Fig. 3.15 we plot the energy spreading
δEprt of the perturbative profile as a red line. We find that this criterion yields the same results

10In our numerical analysis we have defined, δkqm as the perturbation strength for which 50% of the proba-
bility remains at the original site but we have checked that the condition Γ = ∆ gives the same result. For
determining δkprt we use the procedure described in the paragraph around Eq. (3.27).

11Note that the prefactor N2/Ũ in (3.14) is a consequence of the rescaled variables introduced in Chapter 2
and hence of classical nature.
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Figure 3.16.: The parameters (a) δkqm and (b) δkprt for various Ũ ,N, and for λ0 = 0.053. A nice
scaling in accordance with Eqs.(3.35) and (3.36) is observed.

as the previously discussed condition, namely that the core-width Γ becomes comparable
to the bandwidth ∆b ≈ 280. This indicates that both criteria are equivalent. We note that the
increase of δEprt after the breakdown of perturbation theory for large δk values is trivially
caused by an increasing ∆.

3.6.2. The non-perturbative regime and detailed quantum-classical
correspondence

Next, we focus on the applicability of the RMT approach in the non-perturbative regime
δk > δkprt. Looking at the energy spreading δE reported in Fig. 3.15b we observe that
the random matrix model produces basically identical results as the BHH for all values
of δk. Thus, we might be tempted to conclude that the IRMT model yields the correct
profile P(n|m) also for δk > δkprt. Looking at Fig. 3.14c it is obvious that this is not the
case: while the LDoS of the IRMT model approaches a semicircle, the profile P(n|m) of
the BHH becomes system-specific. Why is this not reflected in the spreading δE? The
answer lies again in the nature of the variance δE2. The latter is determined solely by the
bandprofile |Bnm|2 through expression (3.33) which we overplot in Fig. 3.15 as a green line.
One observes an excellent agreement with the numerically obtained δE for both the BHH
and the IRMT model which share by construction the same bandprofile. It is therefore clear,
that we cannot distinguish between the models by looking at the spreading δE.12

Coming back to the profile P(n|m), the failure of the RMT approach can now be un-
derstood also from a different point of view. In Section 3.5, we had argued in a heuristic
manner that the non-perturbative and the semiclassical limit coincide. Now, we can see
this formally by looking at the scaling (3.36) of the perturbative border δkprt ∼ Ũ/N: one
can either approach the non-perturbative limit by increasing the perturbation strength δk or,
alternatively, by fixing δk and increasing N. As we have seen before increasing N means
to approach the semiclassical limit (keeping Ũ = const.). But the IRMT model does not
have a semiclassical limit! Therefore, we cannot expect it to yield a correct description of
12As we shall see in the next chapter, this is not true for the time-dependent k(t).
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Figure 3.17.: The kernel P(n|m) (LDoS representation) for the BHH in the non-perturbative regime
δk = 10 for N = 230 and λ = 0.053. In the upper panel we plot a time series E(t) which leads to the
classical profile Pcl(E) (see text for details).

P(n|m) in that regime. Instead, the LDoS becomes eventually semicircle (see Eq. (3.28)),
irrespective of the exact bandprofile |Bnm|2 because higher order correlations of the true
matrix elements Bnm are not taken into account by RMT.

What happens to the BHH in this regime? Since for δk > δkprt perturbation theory – even
to infinite order – breaks down one has to rely on completely non-perturbative methods to
evaluate P(n|m) [56, 59, 112]. As described in Section 3.5 we therefore propagate a trajec-
tory (I(t),ϕ(t)) of the unperturbed Hamiltonian H0 and project it onto H . In Fig. 3.17a
we plot the resulting E(t) = H (I(t),ϕ(t)) as a function of time. The classical distribution
Pcl(n|m) is constructed (Fig. 3.17b) from E(t), by averaging over a sufficiently long time.
The good agreement with the quantum profile P(n|m) is a manifestation of the detailed
quantum-classical correspondence which – in contrast to the restricted QCC – is limited
to the non-perturbative, i.e. semiclassical, regime. Note though that the classical profile
Pcl(n|m) displays sharp borders as expected from the phase space picture discussed in Sec-
tion 3.5.

3.7. Conclusions

In the first part of this chapter, we have studied the spectral properties of the trimeric BHH
and related them to the nature (chaotic/regular) of the underlying classical dynamics. We
then explored the structures in the energy landscape of the perturbation operator B̂ corre-
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sponding to a change in the coupling strength k0 → k0 + δk between the neighboring sites
and used the results to introduce an improved random matrix theory (IRMT) model. In the
main part, we analyzed the structural changes which the eigenstates undergo as the per-
turbation strength δk is increased, for both the BHH and the IRMT model. For δk < δkqm

the perturbation mixes only neighboring levels: the main component of the kernel P(n|m)
remains unaffected while corrections are captured by standard textbook finite order pertur-
bation theory. For δkqm < δk < δkprt a non-trivial structure appears, consisting of two distinct
components: while the tails are still captured by perturbation theory, the central part is of
non-perturbative nature and extends over an energy width Γ ∝ N2 ·δk2/Ũ . In this case, the
power spectrum of the generalized force C̃(ω̃) is an important ingredient for the theory. Ex-
perimentally, it is directly measurable [216] because the momentum distribution of atoms
in a lattice is∼∑ j exp(ik j)X j where k is the atomic momentum and X j = 〈[b̂†

j+l b̂l +h.c.]〉 is
the one-particle density matrix. In the opposite limit δk > δkprt one can apply semiclassical
(non-perturbative) considerations. For δk > δkprt, random matrix theory breaks down and
quantum mechanical perturbation theory fails totally. Instead, classical calculations can be
used to predict the shape of P(n|m).
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In recent years there has been an increasing interest in understanding the theory of driven
quantum systems in fields as diverse as mesoscopic electronic, atomic and molecular physics
[40,52,58,60,112,137,205,209–213]. Driven systems are described by parametric Hamil-
tonians H (I,ϕ,X(t)) with (I,ϕ) being a set of canonical coordinates while X(t) is some
time dependent parameter. As a consequence of the time-dependence, the energy of the
system is not a constant of motion but the system makes “transitions” between energy lev-
els. In case of linear or periodic driving, the long time behavior of the energy spreading
is characterized by diffusion, which results in a systematic increase of the average energy.
This irreversible process of energy absorption is known as dissipation.

Currently a well developed classical theory of dissipation is available. On the quan-
tum side, however, things are less clear. For example, questions on the validity of linear
response theory and the implications of underlying classically chaotic dynamics have not
been answered in a satisfactory way. In this respect, the first step towards understanding
the quantum dissipation problem is to investigate the short time dynamics associated with
simplified dynamical scenarios like the so-called wavepacket dynamics. Here cold bosons
in optical lattices – as described by the Bose-Hubbard Hamiltonian – are viable candidates
to experimentally realize such driven systems and study their quantum dynamics. This is
due to the fact that they are readily created using standard techniques while at the same time
the control in preparation and measurement of the atomic cloud is very precise.

Remarkably enough, there has already been an experimental observation of the many-
body quantum dynamics for the special case of the integrable Bose-Hubbard dimer, with
intriguing results [1] like symmetry-breaking and self-trapping of the boson population.
However, for the more general scenario of chaotic Bose-Hubbard Hamiltonians less is
known. Its spectral properties [49, 64, 71, 135] have been studied earlier in the context of
molecular physics, while only recently the eigenfunctions [114] were investigated. Apart
from Refs. [89, 165], where the dynamics of a model similar to the BHH was considered,
most of the works rely on semiclassical or mean-field treatments like the Gross-Pitaevskii
equation [41, 92, 93].

In this chapter, we will study the response of cold atoms to a rectangular pulse of fi-
nite duration t that perturbs the coupling between adjacent wells of the chaotic BHH. The
corresponding dynamical scenario is known as wavepacket dynamics [52, 57, 114, 136],
and represents the natural continuation of Chapter 3. There we studied the “sudden” case
(LDoS) where no time evolution takes place after the system is perturbed.

Wavepacket dynamics is one of the most basic non-trivial dynamical evolution schemes
and therefore of fundamental interest. At the same time, its analysis will pave the way
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for understanding more demanding evolution scenarios and ultimately the response of cold
atoms under persistent driving. The main target of this study is to identify the limits of the
various theoretical approaches to the problem. On the one hand, we will use linear response
theory (LRT) which constitutes the leading framework for the analysis of driven systems.
Considering at the same time quantum and classical LRT we will pay special attention to
the manifestation of detailed vs. restricted quantum classical correspondence (QCC) as
introduced in Chapter 3. On the other hand, we are going to investigate the limits of the
random matrix theory (RMT) modeling. In the previous chapter RMT proved to capture
the spectral statistics as well as the LDoS shape in the perturbative regime. Note, however,
that the applicability of RMT is a conjecture which should be tested. While the last chapter
was focused on static properties, we here study wavepacket dynamics. This poses a bigger
challenge to RMT since the dynamical evolution involves both eigenvalues and eigenvectors
as well as correlations between them.

The structure of this chapter is as follows: in the next section we discuss the setup of
the wavepacket dynamics experiment together with the different measures which we will
employ to investigate it and mark the general assumptions underlying the study. In Section
4.2 we present the theoretical calculations for driven quantum systems based on LRT and
revise the knowledge on the dynamical evolution of chaotic quantum single-particle systems
[52, 57, 112]. In the same section we show how the survival probability is connected to
the LDoS which was studied in the previous chapter. Section 4.3 contains the results of
our numerical analysis [115]. We find a good agreement with the theoretical predictions
obtained via LRT, and also observe quantum classical correspondence. We demonstrate the
weakness of the RMT strategy in the regime of strong perturbations. Finally, we exhibit a
striking feature of the lattice dynamics in the so-called self-trapped regime. The last section
summarizes our findings.

4.1. Preliminary considerations and object of the study

In this chapter we study the time evolution of the energy distribution in the Bose-Hubbard
Hamiltonian as the coupling strength k = k(t) between neighboring sites is changed.1 We
are going to use the trimeric BHH2 (see Section. 2.6)

Ĥ = Ĥ0−δk(t)B̂ , (4.1)

where the unperturbed Hamiltonian Ĥ0 is given by Eq. (2.39) with k = k0 = k(0) and B̂
being the coupling operator (see Eq. 3.2). Again, we emphasize that a fixed assumption
of this work is that the perturbation δk(t) = k(t)− k(0) is classically small δk � δkcl, and
thus we are always in the classical LRT regime. If not stated otherwise, we will use the

1Experimentally, this type of perturbation is easily implemented (see Chapter 2).
2Again, we stress the fact that for an appropriate choice of energy and lattice parameters the trimer BHH

can be chaotic and thus the main ingredient to generalize the result to larger lattices.
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f(t)
.

i

f(t)

t t0

Figure 4.1.: Scheme of the wavepacket dynamics sce-
nario: the perturbation is a rectangular pulse of dura-
tion ti at which the measurement is done. The func-
tion f (t) represents the rescaled time-dependence of
the perturbation δk(t) = δk× f (t) (black line) while
the red line indicates its time derivative ḟ (t).

same parameters as in the previous chapter, i.e., k0 ≈ 15, Ũ ≈ 280, and an energy window
H̃ ≈ 0.26±0.02, where the motion is predominantly chaotic.

As before, the calculations are carried out in the basis of Ĥ0 in which the latter becomes
diagonal, i.e. H = E0− δk(t)B (see also Eq. (3.3)). In contrast to the LDoS studies, δk(t)
is now time dependent. For later purposes it is convenient to write the perturbation as

δk(t) = δk× f (t) , (4.2)

where δk controls the “strength of the perturbation” while f (t) is the scaled time depen-
dence3.

Although our focus will be on the wavepacket dynamics scenario where the perturbation
is a rectangular pulse of strength δk and duration t – see Fig. 4.1 for a sketch of the resulting
step function f (t) with k(t) = k(0) – we expect that the results will shed some light on the
more demanding problem of quantum dissipation.

In order to study the dynamics, we have to introduce measures that quantify the departure
from the initial state. We define a set of such measures in the following subsection.

4.1.1. Measures of the evolving distribution Pt(n|n0)

We consider an initial micro-canonical preparation in an eigenstate |n0〉 of the unperturbed
Hamiltonian Ĥ(I,ϕ;k(0)). Given the driving scenario k(t), it is most natural to analyze the
evolution of the probability distribution

Pt(n|n0) = |〈n|Û(t)|n0〉|2 , (4.3)

where

Û(t) = T̂ exp[− i
h̄

tZ
0

dt ′ Ĥ(k(t ′)] (4.4)

is the time-ordered evolution operator and Ĥ(I,ϕ;k(t))|n〉 = En|n〉. Note that the LDoS
(3.20) is recovered from the above kernel (4.3) by setting the time evolution to Û(0)≈ 1.

By convention we order the states by their energy. Hence we can regard Pt(n|n0) as
a function of r = n− n0, and average over the initial preparation, so as to get a smooth
distribution Pt(r).

3Note that if we had f (t) ∝ t, i.e. persistent driving, then δk would be the “rate” of the driving.
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4. Wavepacket Dynamics in Energy Space

The survival probability is defined as

P(t) = |〈n0|Û(t)|n0〉|2 = Pt(n0|n0) , (4.5)

and the energy spreading is defined as

δE(t) =
√

∑
n

Pt(n|n0)(En−En0)2 . (4.6)

These are the major measures for the characterization of the distribution we are going to
analyze in this chapter.

The physics of δE(t) is very different from the physics of P(t): while the former is very
sensitive to the tails of the distribution, the latter probes only the initial excitation |n0〉.
Yet, the actual “width" of the distribution is not captured by any of these measures: as we
have seen in Chapter 3 a “core” of width Γ (see Eq. 3.34) can appear as a result of a non-
perturbative mixing of levels. Similarly to the Γ which was obtained from normalization of
the perturbative profile we can define an operative measure δEcore that reflects the width of
the “core” of the distribution which contains 50% of the probability:

δEcore(t) = [n75%−n25%]∆ . (4.7)

Here, ∆ is the mean level spacing and nq is determined through the equation ∑n Pt(n|n0) = q.
As an additional characteristic of the distribution we introduce the participation ratio

δnIPR(t). It yields the number of levels occupied by the distribution at time t and is defined
as

δnIPR =
(

∑
n
|cn|4

)−1

, (4.8)

where |cn|2 = Pt(n|n0). The ratio δnIPR/(n75%−n25%) can be used as a measure for sparsity.
We consider in this chapter strongly developed chaos, so that sparsity is not an issue and
δnIPR ∼ δEcore/∆.

4.2. Linear response theory

In this section we derive the analytical calculations for the quantum dynamics using linear
response theory. The strategy is to identify regimes in a way similar to the LDoS theory
described in Chapter 3. However, the definition of regimes for driven systems is more com-
plicated: it is clear that for short times we can always use time-dependent FOPT. The ques-
tion is, of course, what happens next. Here we have to distinguish between two different
scenarios. The first one is wavepacket dynamics for which the dynamics is a transient from
a preparation state to some new ergodic state. The second scenario is persistent driving,
either linear (δk(t) = δkt) or periodic (δk(t) = δk sin(Ωt)). In the latter case the strength of
the perturbation depends also on the rate of the driving, not just on the amplitude. We will
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4.2. Linear response theory

keep the resulting LRT expressions as general as possible and apply them to the wavepacket
dynamics in the next section. This will allow us to draw some general conclusions as far as
driven systems are concerned.

The crucial question is on the validity of linear response theory [112]. In order to avoid
ambiguities we here adopt a practical definition. Whenever the result of the calculation
depends only on the two point correlation function C(τ) (see Eq. (3.11)), or equivalently
only on the bandprofile of the perturbation (which is described by C̃(ω), see Eq. (3.14)),
then we refer to it as “LRT”. This implies that higher order correlations are not expressed.
There is a (wrong) tendency to associate LRT with FOPT. In fact the validity of LRT is not
simply related to FOPT. We shall clarify this issue in the next subsection.

For both δE(t) and P(t) we have “LRT formulas” which we discuss in the next subsec-
tions. Writing the driving pulse as δk(t) = δk f (t) we obtain for the energy spreading

δE2(t) = δk2×
∞Z

−∞

dω

2π
C̃(ω)F̃t(ω) , (4.9)

while for the survival probability we have

P (t) = exp

−δk2×
∞Z

−∞

dω

2π
C̃(ω)

F̃t(ω)
(h̄ω)2

 . (4.10)

Two spectral functions are involved: One is the classical power spectrum C̃(ω) of the fluc-
tuations defined in Eq. (3.12), and the other F̃t(ω) is the spectral content of the driving pulse
which is defined as

F̃t(ω) =

∣∣∣∣∣∣
tZ

0

dt ′ ḟ (t ′)e−iωt ′

∣∣∣∣∣∣
2

. (4.11)

Since this is the only information which enters the perturbation theory we expect that
a theoretical modeling that incorporates both F̃t(ω) and C̃(ω) but does not contain higher
order correlations will reproduce exactly the LRT results. In Section 3.2 we introduced such
a strategy which we follow here as well. Namely, we will model the dynamics generated
by the BHH using the improved RMT (IRMT) model that incorporates C̃(ω) through the
bandprofile of the perturbation matrix B while the spectral content F̃t(ω) is imposed by the
driving. We will test the applicability of RMT and pay special attention to the behavior of
the IRMT dynamics in the non-perturbative regime.

Here we summarize the main observations regarding the nature of wavepacket dynamics
in the various regimes:

• FOPT regime: In this regime P (t)∼ 1, indicating that all probability is concentrated
in the initial level all the time. An alternative way to identify this regime is from
δEcore(t) which is trivially equal to ∆.
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4. Wavepacket Dynamics in Energy Space

• Extended perturbative regime: The appearance of a core-tail structure which is char-
acterized by a separation of scales ∆ � δEcore(t)� δE(t)� ∆b. The core is of non-
perturbative nature, but the variance δE2(t) is still dominated by the tails. The latter
are described by perturbation theory.

• Non-perturbative regime: The existence of this regime is associated with having the
finite energy scale ∆b. It is characterized by ∆b � δEcore(t)∼ δE(t). As implied by the
terminology, perturbation theory (to any order) is not a valid tool for the analysis of
the energy spreading. Note that in this regime, the spreading profile is characterized
by a single energy scale (δE ∼ δEcore).

4.2.1. The energy spreading δE(t)

Of special importance for understanding quantum dissipation is the theory for the variance
δE2(t) of the energy spreading. Having δE(t) ∝ δk means linear response. If δE(t)/δk
depends on δk, we call it “nonlinear response”. In this paragraph we explain that linear
response theory (LRT) is based on the “LRT formula” Eq. (4.9) for the spreading. This
formula has a simple classical derivation (see Subsection 4.2.1.1 below).

It is understood that we always assume the classical conditions for the validity of Eq. (4.9)
to be satisfied (no h̄ involved in such conditions). The question is what happens to the va-
lidity of LRT once we quantize the system [58–60, 112, 137].

The immediate (naive) tendency is to regard LRT as the outcome of quantum mechanical
first order perturbation theory (FOPT). In fact, the regimes of validity of FOPT and LRT
do not coincide. On the one hand we have the adiabatic regime where FOPT is valid as a
leading order description, but not for response calculation. On the other hand, the validity
of Eq. (4.9) goes well beyond FOPT. This leads to the (correct) identification [52, 58, 60]
of what we call the “perturbative regime”. The border of this regime is determined by the
energy scale ∆b, while ∆ is not involved. Outside of the perturbative regime we cannot trust
the LRT formula. However, as we further explain below, the fact that Eq. (4.9) is not valid
in the non-perturbative regime does not imply that it fails there.

We stress again that one should distinguish between “non-perturbative response” and
“nonlinear response”. These are not synonyms. As we explain in the next paragraph, the
adiabatic regime is “perturbative” but “nonlinear”, while the semiclassical limit is “non-
perturbative” but “linear”.

In the adiabatic regime, FOPT implies zero probability to make a transitions to other
levels. Therefore, to the extent that we can trust the adiabatic approximation, all probability
remains concentrated on the initial level. Thus, in the adiabatic regime Eq. (4.9) is not
a valid formula: It is essential to use higher orders of perturbation theory, and possibly
non-perturbative corrections (Landau-Zener [209, 210]), in order to calculate the response.
Still, FOPT provides a meaningful leading order description of the dynamics (i.e. having
no transitions), and therefore we do not regard the adiabatic nonlinear regime as “non-
perturbative”.
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4.2. Linear response theory

In the non-perturbative regime the evolution of Pt(n|m) cannot be extracted from pertur-
bation theory, not in leading order nor in any order. Still this does not necessarily imply a
nonlinear response. On the contrary: the semiclassical limit is contained in the deep non-
perturbative regime [58, 60, 112, 114]. There, the LRT formula Eq. (4.9) is in fact valid.
But its validity is not a consequence of perturbation theory, but rather the consequence of
quantum-classical correspondence (QCC).

In the next subsection we will present a classical derivation of the general LRT expression
(4.9). In Subsection 4.2.1.2 we derive it using first order perturbation theory (FOPT). In
Subsection 4.2.2 we derive the corresponding FOPT expression for the survival probability.

4.2.1.1. Classical LRT derivation for δE(t)

The classical evolution of E(t) = H (I(t),ϕ(t)) can be derived from Hamilton’s equations.
Namely,

dE (t)
dt

= [H ,H ]PB +
∂H
∂t

=−δk ḟ (t)F (t) , (4.12)

where [·]PB indicates the Poisson brackets and F (t) is the generalized force introduced in
Subsection 3.1.2. Integration of Eq. (4.12) leads to

E(t)−E(0) =−δk
tZ

0

F (t ′) ḟ (t ′)dt ′ . (4.13)

Taking a micro-canonical average over initial conditions we obtain the following expression
for the variance

δE2(t) = δk2
tZ

0

C(t ′− t ′′) ḟ (t ′) ḟ (t ′′)dt ′dt ′′ , (4.14)

which can be re-written in the form of (4.9). Here C(t ′− t ′′) is the autocorrelation function
of the generalized force F (t) (see Sec. 3.1.2).

An extreme case of Eq. (4.9) is the sudden limit for which f (t) is a step function. Such
an evolution is equivalent to the LDoS studies of Chapter 3. In this case Ft(ω) = 1, and
accordingly we recover the result from (3.32), namely

δEcl = δk×
√

C(0) ["sudden" case] . (4.15)

Another special case is the response for persistent (either linear or periodic) driving of a
system with an extremely short correlation time. In such a case Ft(ω) becomes a narrow
function with a weight that grows linearly in time. For linear driving ( f (t) = t) we get
Ft(ω) = t×2πδ(ω). This implies diffusive behavior:

δE(t) =
√

2DEt ["Kubo" case] , (4.16)

where DE ∝ δk2 is the diffusion coefficient. The expression for DE as an integral over the
correlation function is known in the corresponding literature either as Kubo formula, or as
Einstein relation, and is the cornerstone of the Fluctuation-Dissipation relation.
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4. Wavepacket Dynamics in Energy Space

4.2.1.2. Quantum LRT derivation for δE(t)

The quantum mechanical derivation looks like an exercise in first order perturbation theory.
In fact a proper derivation that extends and clarifies the regime where the result is applicable
requires infinite order. If we want to keep a complete analogy with the classical derivation
we should work in the adiabatic basis [52]. (For a brief derivation see Appendix D of
Ref. [213]).

In the following presentation we work in a “fixed basis” and assume f (t) = f (0) = 0.
We use the standard textbook FOPT expression for the transition probability from an initial
state m to any other state n. This is followed by integration by parts. Namely,

Pt(n|m) =
δk2

h̄2 |Bnm|2
∣∣∣∣∣∣

tZ
0

dt ′ f (t ′)ei(En−Em)t ′/h̄

∣∣∣∣∣∣
2

=
δk2

h̄2 |Bnm|2
F̃t(ωnm)
(ωnm)2 , (4.17)

where ωnm = (En−Em)/h̄. Now we calculate the variance and use Eq. (3.14) so as to get

δE2(t) = ∑
n

Pt(n|m)(En−Em)2

= δk2
∞Z

−∞

dω

2π
C̃(ω) F̃t(ω) . (4.18)

4.2.1.3. Restricted QCC

As already seen in Section 3.5 of the LDoS studies, the FOPT result for the quantum me-
chanical energy spreading δE(t) is exactly the same as the classical expression Eq. (4.9).
Since this quantum-classical correspondence applies only for the second moment of the
energy distribution it was termed “restricted QCC”. We recall from the discussion in Sec-
tion 3.5 that this very robust correspondence [60] should be contrasted with “detailed QCC”
that applies only in the semiclassical regime where Pt(n|m) can be approximated by a clas-
sical result Pcl

t (n|m) (and not by a perturbative result). For the definition of the classical
profile Pcl

t (n|m) in the wavepacket dynamics scenario see beginning of Section 4.3.

4.2.2. Quantum LRT derivation for P (t)

With the validity of FOPT assumed, we can also calculate the time-decay of the survival
probability P (t). From Eq. (4.17) we get:

p(t)≡ ∑
n(6=n0)

Pt(n|m) = δk2
∞Z

−∞

dω

2π
C̃(ω)

F̃t(ω)
(h̄ω)2 . (4.19)
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Assuming that P (t)= 1− p(t) can be extrapolated in a “stochastic” fashion we get Eq. (4.10).
Another way to write the final formula is as follows:

P (t) = exp

− 1
h̄2

tZ
0

tZ
0

C(t ′− t ′′)δx(t ′)δx(t ′′)dt ′dt ′′

 . (4.20)

For constant perturbation (wavepacket dynamics) and assuming long times we obtain (see
also Sec. 4.3.3) the Wigner decay,

P (t) = exp

[
−
(

δk
h̄

)2

C̃(ω = 0)× t

]
, (4.21)

which can be regarded as a special case of Fermi’s golden rule.

4.2.3. The survival probability and the LDoS

For constant perturbation it is useful to remember that P (t) is connected to the LDoS as
follows:

P (t) ≡
∣∣∣〈n(k0)|e−iĤ(k)t/h̄|n(k0)〉

∣∣∣2 =
∣∣∣∣∑

m
e−iEm(k)t/h̄|〈m(k)|n(k0)〉|2

∣∣∣∣2

=

∣∣∣∣∣∣
∞Z

∞

P(E|m)e−iEt/h̄dE

∣∣∣∣∣∣
2

, (4.22)

i.e. the survival probability can be written in term of the Fourier transform of the LDoS.
This implies that a Lorentzian approximation for the LDoS will lead to an exponential decay
of the survival probability. In the non-perturbative regime the LDoS is not a Lorentzian, and
therefore one should not expect an exponential. In the semiclassical regime the LDoS shows
system specific features and therefore the decay of P (t) becomes non-universal.

4.3. Wavepacket dynamics of cold bosons on an optical
lattice

After discussing in the previous section the general linear response theory for driven sys-
tems we are now focusing on the wavepacket dynamics [115] in the framework of cold
bosons on optical lattices. We consider an initial preparation which is high enough in en-
ergy such that the corresponding underlying classical dynamics is chaotic. Will the results
follow the above depicted scenario of the Wigner model or will the interatomic interactions
change the picture? An overview of the regimes of Pt(r) is given in Fig. 4.2 where we plot
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a)

b)

c)

Figure 4.2.: The profile Pt(r) of the BHH plotted as a function of time for various perturbation
strengths δk < δkqm (a), δkqm < δk < δkprt (b), δk > δkprt (c). Note the different scale in (c). Here,
N = 70, Ẽ = 0.26 and λ0 = 0.053.
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the quantum spreading profile as a function of time t for three different perturbation strengths
δk. Already from there we recognize a different behavior than in the Wigner model, namely
during the evolution, pronounced sidebands emerge. While these sidebands are familiar
from the LDoS studies in the previous chapter, we furthermore observe an unexpected
“squeezing” of the profile at t ≈ 0.02. The latter is a consequence of the lattices dynamics
and will lead to a drastic effect in the study of quantum stability which is the topic of the
next chapter.

We start the discussion with the classical dynamics and then turn to the evolution of
the quantum profile Pt(r) in the various regimes which we describe in terms of the energy
spreading δE(t) (Subsection 4.3.2) and the survival probability P (t) (Subsection 4.3.3).
Our findings on the detailed quantum-classical correspondence are reported in Subsec-
tion 4.3.4. After that we investigate the energy spreading of the IRMT model with focus
on the non-perturbative regime δk > δkprt where we find a qualitatively different behavior
from the dynamical BHH model. Finally, we report the temporal evolution of the quantum
occupation number ni(t) for the trimer.

4.3.1. Classical dynamics

The classical picture is quite clear [57,112,115,136]: the initial preparation is assumed to be
a micro-canonical distribution that is supported by the energy surface H0(I,ϕ) = E(0) = En0

where the Hamiltonian is given by Eq. (2.23) with f = 3 and vi = 0. Taking H = H0−δkB
to be the generator of the classical dynamics, the phase-space distribution spreads away
from the initial surface for t > 0. “Points” of the evolving distribution move upon the energy
surfaces of H (I,ϕ). Thus, the energy E(t) = H0(I(t),ϕ(t)) of the evolving distribution
spreads with time.

Similarly to the LDoS case in Section 3.5 we can now define a classical spreading profile
Pcl

t (n|n0) which we expect to match the quantum Pt(n|n0) in the deep non-perturbative, i.e.
semiclassical, regime of the BHH. To this end we first propagate a large set of trajectories
{E}t=0 that originate from the energy surface H0(I,ϕ) = E(t = 0) = En0 under the Hamil-
tonian H up to time t. Projecting them back4 onto H0 yields a set of energies {E}t=t whose
distribution5 constitutes the spreading profile Pcl

t (n|n0) at the time t. In complete analogy to
the quantum case, the classical survival probability Pcl(t) is the projection of the spreading
profile on the initial excitation energy, i.e. Pcl(t) =Pcl

t (n0|n0).
The classical energy spreading δEcl(t) can be evaluated using the LRT formula Eq. (4.11)

with a rectangular pulse f (t ′) = 1 for 0 < t ′ < t (see also Fig. 4.1). We get

F̃t(ω) =
∣∣1− e−iωt∣∣2 = (ωt)2sinc2

(
ωt
2

)
, (4.23)

4Note that the quantum profile Pt(n|m) corresponds to projecting the time-evolved state Û(t)|n0〉 onto the
initial basis {|n0〉}.

5Technically, this requires calculating the histogram with a bin-size given by the mean level spacing ∆.
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Figure 4.3.: The classical energy spreading δEcl(t) for the BHH (normalized with respect to the
perturbation strength δk and the boson number N) is plotted as a function of time. The dashed line
has slope one and is drawn to guide the eye. The agreement with the ballistic spreading followed by
saturation as predicted by Eq. (4.25) is apparent.

and hence
δEcl(t) = δk×

√
2(C(0)−C(t)) . (4.24)

For times shorter than the classical correlation time t � τcl (see Eq. (3.13)) we can ex-
pand the correlation function as C(t) ≈ C(0)− 1

2C′′(0)t2, leading to a ballistic evolution.
Then, for t � τcl, due to ergodicity a “steady-state distribution” appears, where the evolving
“points” occupy an energy shell in phase-space. The thickness of this energy shell equals
δEcl. Thus, we have a crossover from ballistic energy spreading to saturation:

δEcl(t)≈
{ √

2(δEcl/τcl) t for t < τcl√
2δEcl for t > τcl

. (4.25)

Figure 4.3 shows the scaled classical energy spreading δEcl(t)/(N δk) for the BHH. The
heavy dashed line has slope one and is drawn to guide the eye. In Subsection 3.1.2 we
found τ̃cl = τclŨ ≈ 2π leading to τcl ≈ 0.02 for the parameters used here. In agreement with
Eq. (4.25) we see that δEcl(t) is first ballistic and then saturates at τcl. Hence, the classical
dynamics is fully characterized by the two classical parameters τcl and δEcl.

4.3.2. Quantum energy spreading

Let us now look at the quantum Bose-Hubbard Hamiltonian. An overview of the spreading
profile Pt(r) for three representative perturbation strengths δk is given in Fig. 4.2. We find
qualitative differences in the spreading depending on the value of δk, which we discuss in
the following, starting with the perturbative regimes.

For small perturbations δk < δkqm (see Fig. 4.2a) the probability is mainly concentrated in
the initial level during the entire evolution. This is the FOPT regime where the perturbation
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Figure 4.4.: The (normalized) energy spreading δE(t) for the BHH (a) and the IRMT model (b)
for three different perturbation strengths δk = 0.05 < δkqm (solid black line), δkqm < δk = 0.3 < δkprt

(dashed red line), and δk = 5 > δkprt (dash-dotted green line). The classical expectation δEcl(t) is
represented in both plots by a dashed blue line for comparison. In the right panel the black dash-
dotted lines have slope one and one-half respectively and are drawn to guide the eye. While for
the BHH model one observes restricted quantum classical correspondence in all regimes this is not
the case for the IRMT model (b): for perturbations δk > δkprt the energy spreading δE(t) exhibits a
premature crossover to diffusive behavior. Here, N = 230, Ũ = 280, Ẽ = 0.26 and λ0 = 0.053.

strength mixes only nearby levels and little probability escapes to the tails.6 At the same
time one observes the appearance of sidebands in the profile. Using our experience from
the LDoS study we can readily identify them as a consequence of the pronounced structure
in the bandprofile of the perturbation matrix B (see Fig. 3.7). In Subsection 3.1.2 the po-
sition of the main peaks in C̃(ω) was determined to be around a frequency ω ≈ 150 which
corresponds to r = ωh̄/∆ ≈ 23 and is in agreement with the data reported in Fig. 4.2. We
note that the bandwidth ∆b ≈ Ũ corresponds to b = ∆b/∆≈ 44.

As the perturbation strength is increased δkqm < δk < δkprt (Fig. 4.2b), levels within the
bandwidth are mixed and one can distinguish two different components in the profile Pt(r).
These are the core, where most of the probability is concentrated (characterized by δEcore(t)),
and the tail component (characterized by δE(t)). The latter is reported in Fig. 4.4a to-
gether with the classical spreading δEcl(t).7 The remarkable fact is that, as far as δE(t) is
concerned, the agreement with the classical result is perfect. This is the above discussed
restricted QCC which could lead to the wrong impression that the classical and quantum
spreading are of the same nature. However, this is definitely not the case.

In order to detect this different nature of the quantum ballistic-like spreading we have to
inquire a measure that is sensitive to the structure of the profile like the core-width δEcore(t).
If the spreading were of classical type this would imply that the spreading profile would
grow homogeneously as schematically depicted in the right panel of Fig. 4.5. Hence it

6The rate is given by FOPT to be proportional to t2, see left panel of Fig. 4.5.
7In the perturbative regime δk < δkprt, the IRMT model gives the same results as the BHH. Thus, we will

use IRMT and LRT as synonyms for δk < δkprt. See also around Eq. (4.11).
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Figure 4.5.: Scheme of the FOPT quantum and the
classical spreading of the profile Pt(m|n). Although
they are of different nature they lead to the same ballis-
tic behavior of the variance.

would be characterized by a single energy scale, i.e. δE(t) ∼ δEcore(t). That this is not
the case can be seen by looking at Fig. 4.6a where we plot δEcore(t). While in the standard
perturbative regime only one level is involved, the core width δEcore(t) grows with increasing
perturbation strength δk (but the tails are still captured by FOPT). We stress the fact that as
long as we have a separation of energy scales, i.e. δEcore(t) < δE(t) < ∆b, we can still use
(infinite order) perturbation theory. Once we enter the non-perturbative regime, δk > δkprt

the core spills over the bandwidth ∆b < δE(t) ∼ δEcore(t) and the separation of scales is
lost. This can be nicely seen in Fig. 4.2c (mind the different scale) where also higher order
sidebands evolve.

Finally, let us compare the evolution of the core-width with the participation ratio δnIPR.
This quantity is a measure for the number of contributing components of a wavefunction.
Accordingly, if the profile is very homogeneous we would expect that the number of con-
tributing levels equals the number of states that constitute the core, i.e., δnIPR(t)× ∆ ∼
δEcore(t). If, however, the profile is very sparse we would expect δnIPR(t)×∆ � δEcore(t). In
Fig. 4.6b we report the scaled participation ratio δnIPR(t)∆/(N δk). One can observe that
it fairly resembles the core width δEcore(t). These deviations can be attributed to the fact
that the shape of the profile is not constant but structured, hence the participation ratio δnIPR

underestimates the number of contributing levels.

4.3.3. The survival probability P (t)

In order to differentiate between short- and long-time decay in the survival probability, it is
useful to rewrite the quantum LRT formula for P (t) using (4.23) as

P (t) = exp

−δk2×
∞Z

−∞

dω

2π
C̃(ω) t t sinc2

(
ωt
2

) . (4.26)

For short times (t � τcl) during which the spreading is ballistic-like, the term t sinc2(ωt/2)
is broad compared to the bandprofile and can be approximated by t leading to

P (t) = exp

(
−C(τ=0)×

(
δkt
h̄

)2
)

. (4.27)

For longer times (t � τcl) on the other hand, the term t sinc2(ωt/2) is extremely narrow and
can be approximated by a delta function δ(ω). This results in the FGR decay of Eq. (4.21).
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Figure 4.6.: Simulations of the wavepacket dynamics for the BHH model for various perturbation
strengths and the same parameters as in Fig. 4.4. The classical spreading δEcl(t) is represented in
both plots by a blue dashed line for the sake of comparison. The evolution (a) of the corresponding
core width δEcore(t) is plotted as a function of time. In the perturbative regimes one observes a
separation of scales δEcore(t) < δE(t) < ∆b, which is lost for strong perturbations δk > δkprt, where
δEcore(t) approaches more and more the classical expectation δEcl(t). In panel (b) we plot the the
corresponding scaled participation ratio δnIPR(t)∆/(N δk) which fairly resembles the behavior of the
core width δEcore(t). See text for details.

How much can we trust these expressions? Obviously FOPT can be trusted as long as
P (t)∼ 1. This can be converted into an inequality t < tprt where

tprt =
(

δkprt

δk

)ν=1,2

τcl . (4.28)

The power ν = 1 applies to the non-perturbative regime where the breakdown of P (t) hap-
pens to be before τcl. The power ν = 2 applies to the perturbative regime where the break-
down of P (t) happens after τcl at tprt = h̄/Γ, i.e. after the ballistic-like stage. In Fig. 4.7 we
present the decay of P (t) for the three regimes. We superimpose the data obtained from the
IRMT model introduced in Section 3.2 which represents the quantum LRT (see also below
Eq. (4.11)). In both perturbative regimes we observe a short initial Gaussian decay (as im-
plied by Eq. (4.27)) which is followed by the exponential FGR decay. In the FOPT regime
(inset of Fig. 4.7a) the entire decay until saturation is described by LRT. In the extended
perturbative regime (see Fig. 4.7a) the overall agreement is still pretty good. However, here
the perturbative break time tprt is shorter and one finds a deviation around the time tprt ∼ 0.01
calculated from (4.28).

For stronger perturbations δk > δkprt LRT breaks down after the initial Gaussian decay
(4.27) around the calculated break time tprt ∼ 0.001. The long term behavior of P (t) in the
non-perturbative regime is not the Wigner decay. It can be obtained by Fourier transform
of the LDoS (see Subsection 4.2.3) which we superimpose in Fig. 4.7b as blue circles. The
agreement with P (t) is excellent.

How do the quantum results compare to Pcl(t) in the non-perturbative regime δk > δkprt?
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Figure 4.7.: The survival probability P (t) for the BHH and three different perturbation strengths
a)δk = 0.05 < δkqm (inset), δkqm < δk = 0.3 < δkprt (main figure), and b) δk = 5 > δkprt . The solid
black line represent the exact numerical result while the dash-dotted red line is the LRT result (4.10)
calculated using the IRMT model (see also Footnote 7). The inset of panel (a) represents the FOPT
regime, while the main figure corresponds to the extended perturbative regime. Here the break time
is tprt ∼ 0.1 given by Eq. (4.28). In the non-perturbative regime (b), the LRT breaks down close to
the calculated break time tprt ∼ 0.001. In this panel we superimpose the Fourier transform of the
LDoS as blue circles. The agreement with P (t) is excellent. Here, N = 230, Ũ = 280, Ẽ = 0.26 and
λ0 = 0.053.

In Fig. 4.8 we report the classical Pcl(t) vs. the quantum P (t). Both decays follow a power-
law. Specifically, we find for the quantum decay

P (t)∼ t−3/2 (4.29)

while the classical survival probability decays as

Pcl(t)∼ t−1 . (4.30)

Although the quantum decay rate is larger than the classical one, the overall quantum de-
cay is slower due to interference phenomena. Naively, one might have expected stronger
developed QCC in the deep non-perturbative regime. We will use the next subsection to
determine in how far these deviations influence other moments of the distribution Pt(r).

Surprisingly, close to the classical correlation time τcl ∼ 0.02 the survival probability
P (t) displays a sequence of peaks which coincides with the dips in the spreading δE(t)
(see Fig. 4.4a). This is the “squeezing” of the profile that can be seen from Fig. 4.2. This
phenomenon will play a prominent role in the next chapter. At this point we only mark,
that it is not a trivial recurrence associated with the discreteness of the quantum system but
rather related to the lattice dynamics.

4.3.4. Detailed quantum-classical correspondence

In Subsection 4.3.2 we have seen that the Bose-Hubbard Hamiltonian exhibits restricted
quantum-classical correspondence. Does it also show detailed QCC [52,112,136], i.e., can
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Figure 4.8.: The quantum and classical survival probability P (t) in the non-perturbative regime
δk = 5 > δkprt. The IRMT result is overplotted as a red line for comparison. The straight lines
represent best fits and have negative slope 1.47 (dashed black line) and 1 (dash-dotted blue line)
respectively. Here, N = 230, Ũ = 280, Ẽ = 0.26 and λ0 = 0.053.

we describe the quantum spreading profile Pt(n|n0) by the classical one Pcl
t (n|n0)? From

the previous discussion it should be clear that we must not expect detailed QCC in the per-
turbative regimes. In fact, this can be also seen by analyzing the saturation profile P∞(n|m)
which we plot in Fig. 4.9 for the BHH and the IRMT model in the three regimes. Analyt-
ically, P∞(n|m) is obtained from the diagonal approximation8 of the spreading profile for
large times:

P∞(n|m) = ∑
n′
|〈n(k0)|n′(k)〉|2|〈n′(k)|m(k0)〉|2 , (4.31)

and can be regarded as the autoconvolution of P(n|m) = |〈n(k)|m(0)〉|2. Thus the average
saturation profile P∞(r) is approximately related to the average shape of eigenstates/LDoS.
From the previous chapter we know that the perturbative LDoS profiles are characterized
by genuine quantum energy scales (like ∆, Γ, ∆b) while the classical ergodic distribution is
characterized by the single energy scale δEcl. Looking at Figs. 4.2c, 4.4b we confirm that
for strong perturbations δk > δkprt (and after a short quantal transition period) there is no
scale separation (δEcore, ∆b). Thus we are left with the non-perturbative regime as the only
candidate to observe detailed quantum classical correspondence.

In Fig. 4.10 we plot four snapshots of the classical and quantum evolving profiles in this
regime. After the quantal transition period (from Fig. 4.4b we extracted t ∼ 0.002) we
observe a reasonable agreement between the classical and the quantum profile, i.e. detailed
QCC [52,112,136]. However, this agreement does not include the survival probability P (t),
since the evolving component Pt(n0|n0) = P (t) associated with the initial excitation |n0〉
decays slower than the classical Pcl(t) as discussed in the previous subsection (see Fig. 4.8).
Nevertheless, note that the initial (quantum dictated) decay is well captured by the IRMT

8For large times t the oscillating terms in (4.31) are assumed to average out and can be neglected.
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Figure 4.9.: Saturation profiles P∞(r) of the wavepacket dynamics for the BHH and the IRMT model
and various perturbation strengths: (a) δk = 0.05, (b)δk = 0.3, and (c) δk = 10. In the perturbative
regimes (a, b) the agreement with is excellent while in the non-perturbative regime (c) δk > δkprt

deviations are observed. BHH and IRMT model differ. Here , N = 230, Ũ = 280, Ẽ = 0.26 and
λ0 = 0.053.

modeling. We conclude that the slower decay of P (t) is due to quantum mechanical effects
that still play a prominent role as far as the survival probability is concerned, but otherwise
do not significantly affect the profile Pt(r).

4.3.5. The dynamics of the IRMT model

In this subsection we further investigate the ability of the RMT approach to describe the
wavepacket dynamics [57, 112, 136]. At first glance, we might be tempted to speculate
that RMT should be able to describe the actual quantum picture at least as far as δE(t) is
concerned. After all, we have seen in Subsection 4.2.1 that the quantum mechanical LRT
formula (4.18) for the energy spreading involves as its only input the classical power spec-

68



4.3. Wavepacket dynamics of cold bosons on an optical lattice

-1000 -500 0 500 1000
E-E

0

-12

-10

-8

-6

-4

-2

0

ln
[P

]

BHH
IRMT
CL

T=0.0001

-3000 -2000 -1000 0 1000 2000 3000
E-E

0

-12

-10

-8

-6

-4

ln
[P

]

T=0.0026

-1000 -500 0 500 1000
E-E

0

-12

-10

-8

-6

-4

-2

0

ln[P]

T=0.001

-3000 -2000 -1000 0 1000 2000 3000
E-E

0

-12

-10

-8

-6

-4

ln[P]

T=0.005

Figure 4.10.: Snapshots of the evolving quantum profile Pt(r) obtained from the BHH (black line)
and the IRMT model (red line) as well as the classical profile Pcl

t (r) in the non-perturbative regime
δk = 5 > δkprt plotted against the energy difference E − E0. After the quantal transition period
t ∼ 0.002 (see Fig. 4.4b) there is no scale separation between the core and the tail component and
one observes overall detailed QCC. However, the initially excited component |n0〉 decays slower in
the quantum case. Here , N = 230, Ũ = 280, Ẽ = 0.26 and λ0 = 0.053.

trum C̃(ω). Thus we would expect that an improved RMT (IRMT) model with the same
bandprofile would lead to the same δE(t) as in the case of the LDoS studied in Subsec-
tion (3.6.2).

However, things are not that simple. In Fig. 4.4b we report the numerical results for
the spreading δE(t) of the IRMT model.9 In the standard and in the extended perturbative
regimes we observe an excellent agreement with Eq. (4.18). But as soon as we enter the
non-perturbative regime, the spreading δE(t) shows a qualitatively different behavior than
the dynamical BHH model (which follows the prediction of LRT). Namely, after an initial
ballistic spreading, we observe a premature crossover to a diffusive behavior

δE(t) =
√

2DEt . (4.32)

On the one hand this is not surprising: as we have seen before, the non-perturbative regime
9The same qualitative results were found also for the prototype WBRM model, see Ref. [57].
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corresponds to the semiclassical limit. Therefore, the energy spreading δE(t) of the BHH
follows the classical LRT expression (4.14), which is equal to the quantum FOPT expres-
sion. The IRMT model does not have a semiclassical limit and accordingly should fail. On
the other hand the deviations in δE(t) are not expected: we observed in the LDoS studies
that the IRMT model was describing the δE behavior correctly even in the non-perturbative
regime. What is the reason for the deviation in the wavepacket dynamics? Unlike in the
LDoS study there is no analytical formula like Eq. (3.33) that would guarantee restricted
QCC for any model that shares the same bandprofile as the BHH. In contrast, we are limited
to quantum perturbation theory. Once the quantum perturbation theory breaks down also
RMT fails to correctly describe the time evolution of the dynamical BHH model.

Let us try to further understand the origin of the diffusive behavior. Up to time tprt the
spreading δE(t) is described accurately by the FOPT result (4.18). At t ∼ tprt the evolving
distribution becomes as wide as the bandwidth10, and we have δEcore ∼ δE ∼ ∆b rather
than δEcore � δE � ∆b. What happens next? The following simple heuristic picture turns
out to be correct. Namely, once the mechanism for ballistic-like spreading disappears, a
stochastic-like behavior takes its place. The stochastic energy spreading is similar to a
random-walk process where the step size is of the order ∆b, with transient time tprt. In the
snapshots shown in Fig. 4.10 the IRMT profile is superimposed as a red line. As one would
expect for a random walk, the profile becomes parabolic in the time-regime, where the
energy spreading δE(t) exhibits diffusion. Therefore we have a diffusive behavior δE(t)2 =
2DEt with a diffusion constant DE. For the WBRM model with its sharply defined bandwidth
we get

DE = C ·∆2
b/tprt = C ·∆2b5/2

δkσ/h̄ ∝ h̄ (4.33)

where C is some numerical pre-factor. This diffusion is not of classical nature, since in
the h̄ → 0 limit we get DE → 0. The diffusion can persist until the energy spreading pro-
file ergodically covers the whole energy shell and saturates to a classical-like steady state
distribution. Accordingly, the differences in the saturation profiles shown in Fig. 4.9c are
less pronounced as in the intermediate cases. The time terg for which we get ergodization is
characterized by the condition (DEt)1/2 < δEcl, leading to

terg = b-3/2 h̄δk σ/∆
2

∝ 1/h̄ . (4.34)

4.4. Quantum self-trapping in the Bose-Hubbard
Hamiltonian

Complementary to the analysis of the wavepacket dynamics in energy space, we will use
this section to shed some light on the time evolution of the BHH in configuration space.
The measure of our interest is the evolving occupation number

ni(t) = 〈n0(t)|b†
i bi|n0(t)〉 , (4.35)

10We recall that in the non-perturbative regime FOPT is subjected to a breakdown before reaching saturation.
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Figure 4.11.: The quantum evolution of ni(t) for various states under the Hamiltonian Ĥ0 starting
from the uncoupled Hamiltonian Ĥuncpl. The insets show magnifications; there the occupation number
ni(t) is additionally marked with symbols: n1 (◦), n2 (�), and n3 (�). The number of particles is
N = 35, Ũ = 280, λ0 = 0 and k = 15. The energy of the initial state |n0〉 is (a) Ẽ = 0.004(ground
state), (b) Ẽ = 0.23, (c) Ẽ = 0.26, and (d) Ẽ = 0.51(most excited state). Note that in (a),(d) sites one
and two have equal occupation (12 particles)/(zero particles) throughout the entire evolution.

where |n0(t)〉 = Û(t)|n0〉 is the time-evolved initial state |n0〉 (Schrödinger picture). Al-
though these results are not of immediate relevance to the study of the wavepacket dynam-
ics in energy space, they are illuminating as far as the richness of the quantum and classical
motion of the BHH is concerned. The analysis is carried out starting from the basis of the
uncoupled Hamiltonian Ĥuncpl with kuncpl = k0 = 0 where the number of particles in each site
is well-defined. The Hamiltonian generating the quantum dynamics is Ĥ0 = Ĥuncpl − δk0B̂.
In order to make a connection with the above studied Hamiltonian Ĥ0 we choose the per-
turbation strength to be δk0 = 15.

We will use initial conditions |n0〉 that are determined by different configurations of
bosons. For repulsive interaction U – which we consider here – the ground state corresponds
to an equidistribution of particles which is due to the nonlinear term in the Bose-Hubbard
Hamiltonian 2.10. Accordingly, an unbalanced site-population leads to higher energies and
the most excited state corresponds to localization of all particles on one site.

In Fig. 4.11 we present the time evolution of the site occupation numbers ni(t) for four
representative initial states |n0〉 using a system of N = 35 bosons. Panel (a) shows the
ground state of the system. Accordingly, the sites are initially occupied by 12 (sites number
one and two) and 11 particles respectively. During the evolution the occupation numbers
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Figure 4.12.: The classical evolution of ni(t) for various initial conditions corresponding to the
quantum calculations of Fig. 4.11. The insets show magnifications; there the occupation number
ni(t) is additionally marked with symbols: n1 (◦), n2 (�), and n3 (�). Note that in (a),(d) sites one
and two have equal occupation throughout the entire evolution. The classical dynamics follows the
quantum for short times except for the self-trapped regime (d).

barely change. As we go higher in the energy En0 of the initial state |n0〉 (b,c), one finds
the expected increasing imbalance in the site occupation. This imbalance (partly) relaxes
during the time evolution leading to an increase in the particle number fluctuations com-
pared to the lower energy (a). However, for very high energies (d) we observe a completely
different behavior: the initially extremely unbalanced population (all particles are initially
localized on site 3) does not relax considerably during the evolution but exhibits only small
oscillations.

This phenomenon is known in the literature as “self-trapping” and is a consequence of the
nonlinear lattice dynamics. It appears both classically [23, 76] and quantum mechanically
[1, 63, 89, 150, 154, 214]. In Fig. 4.12 we report the classical evolution of the population
ni(t) which corresponds to the non-normalized action Ii(t). For short times, quantum and
classical calculations agree quite well while for longer times the different nature of quantum
and classical dynamics becomes visible. Remarkably, for the self-trapped state also the
long-time behavior of classical and quantum dynamics appears to be similar. For a detailed
comparison see Refs. [128, 150, 154, 214] and also [4] for some special solutions of the
classical trimer. Apart from the cited theoretical studies, quantum self-trapping has been
recently observed experimentally for the Bose-Hubbard dimer by the group of Oberthaler
[1]. In Fig. 4.13 we report their experimental data. Self-trapping can play a crucial role as
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Figure 4.13.: Experimental observation of the tunneling dy-
namics of two weekly linked Bose-Einstein condensates in a
symmetric double-well as indicated by the schematics. The
time evolution of the atom population is directly visible in
the absorption images. In (a) the initial population differ-
ence is below the critical value and hence one observes os-
cillations of almost all particles. In (b) the initial difference
in the population is above the critical value leading to self-
trapping of the particles. The figure is a courtesy of M.
Oberthaler [1].

we shall see in the next chapter on quantum stability [31].

4.5. Conclusions

In this chapter we have studied the energy redistribution of the trimeric BHH model in the
chaotic regime as the coupling strength k between neighboring lattice sites undergoes a
change δk [115]. The specific scenario that we have analyzed in detail is associated with
the so-called wavepacket dynamics. While the variance δE2(t) of the evolving distribution
shows a remarkable quantum-classical correspondence for all δk-values, higher moments
exhibit this QCC only in the non-perturbative δk-regime identified with the semiclassical
limit. Surprisingly, we have found that quantum interference phenomena still dominate the
decay of the survival probability P (t) leading to a slower decay with respect to the classical
one. Thus, for δk > δkprtdetailed QCC [52, 136] can be observed with the exception of
the central compoent. Using the IRMT model we found that random matrix theory yields
a valid description of the quantum dynamics in the perturbative regimes [112, 136] but
fails in the limit of strong perturbations δk > δkprt. Finally, we compared the classical and
quantum evolution of the on-site population in various dynamical regimes and exhibited
the phenomenon of self-trapping [1, 76, 92]. Apart from the interest in understanding the
fundamental concept of QCC in the dynamics of quantum chaotic systems, our results are
also extremely relevant to bond excitations in small molecules [187] and BECs in optical
traps with just a few wells. At the same time, they shed some light on the issue of quantum
dissipation in BEC due to persistent driving. As to the experimental realization of the latter
case, microtrap technology [175] is probably the most promising approach for realizing
these small systems.
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5. Fidelity

One of the central questions of quantum mechanics is the manipulation of coherence and the
stability of complex quantum dynamics under external (environmental) perturbations. This
problem has attracted the attention of both the theoretical and the experimental community
due to advances in mesoscopic electronic, atomic and molecular physics [12,117,194]. The
interest is motivated not only by fundamental questions (e.g. quantum-classical correspon-
dence) but also by the possibility to use this knowledge in recent technologies associated
with quantum information and quantum computation [156].

The essential ingredient in the discussion of coherence is to identify a system and a bath
which interact with one another in such a way that a meaningful distinction between both
can be made. In this respect, bosons in optical lattices (OL) – as described by the Bose-
Hubbard Hamiltonian – constitute an ideal framework to study decoherence. On the one
hand, these systems are nowadays readily created using standard experimental techniques
and realizations of quantum information registers using single/multiple atoms on each site
already exist [98]. On the other hand – and maybe even more importantly – these systems
allow for an extraordinary degree of control over the system and the bath, as well as over
the coupling between them [47]. After having gained insight to the eigenfunctions and the
dynamics of the BHH in the previous chapters we are now going to address the issue of
coherence and stability of quantum motion within the framework of fidelity.

The fidelity was first introduced by A. Peres [162]. It is defined as

F(t) =
∣∣∣〈ψ0|e+iĤ2t/h̄ e−iĤ1t/h̄|ψ0〉

∣∣∣2 , (5.1)

where |ψ0〉 is the initially prepared state and Ĥ2 = Ĥ1 +δk B̂. The interpretation of (5.1) is
twofold: it can be seen as the overlap of an initial state |ψ0〉 being once propagated up to
time t under the system Hamiltonian Ĥ1, with the same initial state |ψ0〉 being propagated
for the same amount of time under the Hamiltonian Ĥ2. Here, the term δk B̂ represents the
perturbation due to the interaction with the bath. Under this construction, Eq. (5.1) can be
regarded as a way to capture the physical effect of coupling the system to an environment,
and hence relate F(t) to decoherence [117]. In this framework, F(t) is also referred to as the
Feynman-Vernon influence functional [194]. Alternatively, one can interprete the fidelity as
the return probability of a state |ψ0〉 which is let to evolve under Ĥ1 up to time t and is then
evolved backwards in time under the (slightly) perturbed Hamiltonian Ĥ2 until t = 0. This
viewpoint is commonly adopted in quantum chaos studies where F(t) is a measure for the
reversibility of quantum motion [101, 123, 125, 162].

This chapter is organized as follows: first, we are going to discuss the fidelity in terms of
decoherence. As a pedagogical example we will borrow the Aharonov-Bohm interference
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Figure 5.1.: Schematical description of an interference experiment in an Aharonov-Bohm ring: a
particle travels through a ring geometry with a perpendicular magnetic field from point A to point B
where the interference is measured. It is assumed that the interaction of this system with the bath
occurs only along the right path. If no coupling with the bath is present, the interference remains
unaffected. If on the other hand the system is coupled to the bath, the interference pattern is changed
due to the interaction. Figure taken from [86].

experiment from electronic physics. We then revise how the fidelity F(t) is connected to
the stability and the reversibility of quantum dynamics as it was introduced by Peres. In
Section 5.3 we derive the theoretical predictions for the fidelity decay in our model, the
Bose-Hubbard Hamiltonian. In the last part we present our numerical findings [31]: the
most striking feature is the appearance of fidelity echoes at multiples of the time techo. We
identify the underlying lattice dynamics to be the origin of the echo mechanism and demon-
strate how to control the echo efficiency by an appropriate choice of the initial preparation.
The chapter ends with a conclusion.

5.1. Fidelity and decoherence

In theory one can study quantum systems that are perfectly isolated from the environment.
Experimentally this is extremely difficult, if not impossible. The question then arises how
the environment influences the outcome of the experiment. In order to gain some insight to
this fundamental question we are going to make a short detour and “borrow” a well-known
paradigm from electronic physics, the Aharonov-Bohm ring, which is especially suited to
illuminate the concept of decoherence. The underlying principle is then readily applied to
the bosons in OLs, i.e. the BHH.

The prototype example of an interference experiment in the Aharonov-Bohm (AB) ring
[86, 194] is schematically depicted in Fig. 5.1: a charged particle travels through a ring
geometry from point A to point B taking either the left or the right way. Inside the ring is
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a perpendicular magnetic field and it is further assumed that the interaction of this system
with the bath occurs only along the right path and that the back-reaction of the bath on
the system is small [194]. Since this is a two-path experiment we expect to observe an
interference pattern at the point B.1 At time t = 0 the experiment can be described by a
wavefunction which is the direct product of the system’s state (superposition of a particle
taking the left path l(x, t) and the right path r(x, t)) and the initial state of the bath χ0(η),
where η are its internal degrees of freedom:

ψA(t = 0) = [l(x = A, t = 0)+ r(x = A, t = 0)]⊗χ0(η) . (5.2)

At the point x = B the wavefunction is given by

ψB(t0) = l(B, t0)⊗χl(η)+ r(B, t0)⊗χr(η) , (5.3)

which takes into account that the bath’s state will evolve differently depending on the path
of the particle. The interference term is given by:

2ℜ [l∗(B, t0)r(B, t0)]
Z

dηχ
∗
l (η)χr(η) , (5.4)

where the integration is done over the bath’s degrees of freedom.2 If no coupling with the
bath is present then χl = χr , hence the second term in 5.4 is equal to unity and one recovers
the expression 2ℜ [l∗(B, t0)r(B, t0)] of an AB-ring without environment. When the coupling
to the bath is turned on, the interference term is multiplied by a factor which takes values
between unity and zero (in the latter case the interference pattern is completely lost). In
the following discussion we will see that this multiplicative factor is the fidelity amplitude,
i.e., its absolute value square is the fidelity as defined in Eq. (5.1). The interpretation of this
factor is twofold: one can take either the perspective of the system (in this case the electron)
or the perspective of the bath. In the former case one sees that the partial wave r(x, t) – when
traveling through the bath – experiences a potential. Therefore r(x, t) acquires an additional
phase φ which depends on the possible dynamics and the state of the bath. In the extreme
case, this phase is π/2 and the interference is lost. Taking the perspective of the bath, one
argues that if the bath is not affected by the moving particle, then the interference pattern
remains unchanged while in the opposite case the state of the bath is affected in such a
way that one can determine the path the particle took. In turn, the uncertainty in the path
– which is the origin of the interference – is lost and so is the interference pattern. In the
following we are going to discuss both the case of a static bath as well as the case of a bath
with internal dynamics following the ideas of Stern, Aharonov, and Imry [194].

1This can be seen as an analogy of the double slit experiment where instead of the position on the screen
now the strength of the magnetic field is used to explore the interference pattern.

2This integration is done because only the system can be measured directly while one has no knowledge
about the state of the bath, hence one sums over all its possible states and thus “traces” over the bath.
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5.1.1. Static bath

In the first example, we will consider that the bath consists only of a spin-1/2 particle,
i.e., a scatterer which has no dynamics by itself. This spin is located on the right arm
of the ring and the interaction takes place within a range l leading to an interaction time
τ = l/(pe/me) where pe and me are momentum and mass of the electron respectively. The
spin-electron interaction is modeled by an Ising-like coupling V0σ̂z. If the spin at time t = 0
is in an eigenstate of σ̂z then the scattering is said to be elastic and the interference term is
multiplied by a phase vector. If on the other hand the spin is initially in the eigenstate, say,
σx = +1 then the scattering process will change the state of the spin and the process is said
to be inelastic. In the following we shall see how this leads to dephasing.

At time t = 0 the total wave function is

ψ(t = 0) =
1√
2

[[l(x = A, t = 0)+ r(x = A, t = 0)]⊗ [|σz = +1〉+ |σz =−1〉]] . (5.5)

After passing the scatterer the wave function evolves as

ψ(t) =
1√
2

[l(x, t)⊗ [|σz = +1〉+ |σz =−1〉]

+r(x, t)⊗
[

e−iV0τ |σz = +1〉+ e+iV0τ |σz =−1〉
]]

(5.6)

and at the point B the interference term is

cos(Voτ)2ℜ [l∗(B, t0)r(B, t0)] , (5.7)

hence it is reduced by the factor cos(V0τ). Let’s look at the most drastic case V0τ = π/2.
Taking the perspective of the bath, the effect of the interaction was to change the state of
the scatterer from |σx = +1〉 to |σx =−1〉 thus the wave function of the system is

ψ(t0) = l(B, t0)⊗|σx = +1〉+ r(B, t0)⊗|σx =−1〉 , (5.8)

and the interference is completely lost. If we take the electron’s point of view, then we look
only at the wave function of the partial waves

l(B, t0)+ eiφr(B, t0) . (5.9)

In this picture, the right partial wave has accumulated a statistical phase which is distributed
as

P(φ) =
{

0.5 for the phase to be −V0τ

0.5 for the phase to be +V0τ
. (5.10)

In oder to calculate the interference term one has to perform an averaging over the possible
phases. This leads to four terms and eventually back to Eq. (5.7). Due to the periodicity of
the exponential function, V0τ = π/2 is the broadest distribution of phases which can occur
and which leads to a total loss of coherence.
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5.1.2. Dynamical bath

In the second example, we will consider a bath with (possibly complex) dynamics generated
by the Hamiltonian Ĥbath(η) and an interaction given by V̂ (xr(t),η). Here xr(t) denotes the
position of the electron and indicates that the interaction takes place only on the right half
of the ring. Starting with the initial wavefunction (5.2) we obtain the total wavefunction at
the point B

ψB(t0) = l(B, t0)⊗ e−iĤbath(η)t0χ0(η)

+ r(B, t0)⊗ T̂ exp

−i

t0Z
0

dt
(
Ĥbath(η)+V̂ (xr(t),η)

)χ0(η) (5.11)

where T̂ is the time-ordering operator. By using the interaction picture (with respect
to the unperturbed bath evolution Ĥbath(η)) we obtain for th potential V̂I((xr(t),η), t) =
eiĤbatht0V̂ (xr(t),η)e−iĤbatht0 and with this

ψB(t0) = l(B, t0)⊗ e−iĤbath(η)t0χ0(η)

+ r(B, t0)⊗ e−iĤbath(η)t0T̂ exp

−i

t0Z
0

dt V̂I((xr(t),η,)t)

χ0(η). (5.12)

As before, the interference term is multiplied by a factor and takes the form

〈χ0|e+iĤbath(η)t0e−iĤbath(η)t0T̂ exp

−i

t0Z
0

dt V̂I((xr(t),η,)t)

 |χ0〉 ,

in which one immediately recognizes the fidelity amplitude. Taking the perspective of
the bath, the fidelity can be seen in the following way: if the particle takes the left path,
the bath evolves under its own dynamics generated only by the Hamiltonian Ĥbath. Ac-
cordingly we obtain |χl〉 = e−iĤbath(η)t0 |χ0〉. If on the other hand the particle takes the
right path, the evolution of the bath is changed by a perturbation V̂I leading to |χr〉 =
e−iĤbath(η)t0T̂ exp

[
−i

R t0
0 dt V̂I((xr(t),η,)t)

]
|χ0〉 and hence the overlap of the two states is

reduced. From the electron’s point of view we would again look only at the partial wave
functions (5.9). However, now the accumulated phase has a more complex distribution
since it depends not only on the initial state of the bath χ0(η) and the time τ of the inter-
action but also on the internal dynamics generated by Ĥbath. The effect of the interaction
of the electron with the bath is then to multiply the interference term with the expectation
value of the phase 〈eiφ〉 = 〈χ0|T̂ exp

[
−i

R t0
0 dt V̂I((xr(t),η,)t)

]
|χ0〉. In order to calculate

this average one has also to trace over the bath, since its initial state is unknown. Then,
for broad and slowly varying distributions P(φ) this average is likely to be zero, thereby
causing decoherence.
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5.2. Fidelity and quantum irreversibility

As mentioned above, the fidelity F(t) was first introduced by Peres [162] who used it to
study quantum-classical correspondence. In particular, he showed that the stability – and
hence the reversibility – of the quantum dynamics strongly depends on whether the under-
lying classical motion is chaotic or integrable. Together with the fidelity, he introduced a
new concept of irreversibility which is applicable to both quantum and classical dynam-
ics 3. The intuitive meaning of irreversibility is that there are dynamical evolutions which
can easily be prepared, but it is extremely difficult (we say impossible) to prepare the time-
reversed evolutions. For example, let us consider the melting process of an ice cube floating
in a cup of hot water. Let us assume that after some time, we reverse the velocities of all
the molecules. If the external conditions are kept strictly the same, the ice cube is expected
to re-emerge out of the water. In practice, the initial conditions (fields) are not exactly the
same, and as a result we have what looks like irreversibility.

The classical explanation given to irreversibility is based on the concepts of mixing and
coarse graining. Mixing can be understood formally in the following way: consider two
finite (and fixed) subsets of phase space, say V1 and V2, whose measure are fractions µ1 and
µ2 of the total phase space. Suppose that at the time t1, the distribution f1(p,q) is uniform
in V1 with

R
dV1 f1 = 1 . Then, for any time t2 sufficiently remote from t1 (in the future or

in the past) and for sufficiently large µ1 and µ2 we have |
R

dV2 f2−µ2|< δ, with arbitrarily
small δ, irrespective of where V1 is. Obviously, the smaller µ1 or µ2, the larger the time
|t1− t2| needed for mixing. In the ice-cube paradigm, V1 (the region of phase space which
corresponds to an ice cube in hot water) is considerably smaller than V2, which corresponds
to what we loosely call lukewarm water with no further specification of the water properties.
This is because,for a given total energy, nearly all the points of phase space are compatible
with this vaguely specified state of water, so that µ2 ≈ 1. Therefore, almost every dynamical
evolution will lead to lukewarm water, with extremely small inhomogeneities, since µ2 ≈ 1
is the probability of finding the final state in V2. Nevertheless we can, conceptually, prepare
lukewarm water at time t2 so that, at a later time t1 it will separate into an ice cube and hot
water. But this requires a very special preparation: not only a cup of lukewarm water, but
one with precise correlations between all the molecules. This preparation is restricted to lie
in an exceedingly contorted region of phase space. With such small structures, mixing will
not yet have accomplished after given finite time t1− t2.

The property of mixing is time-symmetric and by itself it cannot explain irreversibility.
Now comes coarse graining. We are unable, with our imperfect instruments, to prepare the
initial state in such a way that it will reside within a region of phase space that is so small
or that has such a complicated structure that mixing will not yet have occurred after a finite
time t1− t2. That is, we cannot prepare the system at time t2 so that after a finite time t1− t2
it will be located with certainty within the desired domain V1 of phase space. There are
evolutions (as from lukewarm water to an ice cube in hot water) that cannot be made to

3Here we follow closely the discussion of Peres in [163]
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Figure 5.2.: Schematic representation of the two
(mathematically equivalent) notions of F(t): the ab-
solute value squared of the bracket between |ψ1〉 and
|ψ2〉 yields the fidelity while the from bracketing |ψ0〉
and |ψLE〉 one obtains the Loschmidt echo.

proceed. What happens to mixing and coarse graining if we go to the quantum world?
First of all, a distribution in phase space cannot develop structures on scales smaller than

h̄ due to the uncertainty principle. Therefore it does not lead to the mixing property as we
defined it above. Moreover, coarse graining of instruments does not seem to make sense in
the quantum context. Here, dynamical quantities appear with discrete values and it is, in
principle, possible to prepare arbitrary, pure quantum states. To make things worse, if there
is an uncertainty in the preparation of the initial state it will not grow, because the time
evolution is unitary. This implies that initially neighboring states remain close throughout
the evolution, as their scalar product is invariant.

In order to introduce a concept for analyzing the stability of both classical and quantum
motion, Peres made the following ansatz: instead of assuming an initial preparation |ψ0〉 of
limited accuracy, he assumed that the Hamiltonian is not known exactly because there is no
way to have complete control over the system’s parameters, for example a stray magnetic
or gravitational field that is present in the lab. This led to the above definition of the fidelity
F(t) (see Eq. 5.1) which can be interpreted in the following two different, though formally
equivalent, ways (see Fig. 5.2): in order to determine the stability of the quantum dynamics
one has to calculate the overlap of an initial state |ψ0〉 being once propagated under the sys-
tem Hamiltonian Ĥ1, with the same initial state |ψ0〉 being propagated under the perturbed
Hamiltonian Ĥ2. This is Peres’ original interpretation of fidelity and is denoted by the ’blue
route’ in the above scheme. It has been recently used, for example, in quantum computa-
tion studies [156] to quantify the corruption of quantum information. Alternatively, one can
interprete the fidelity in the following way (’red route’): the state |ψ0〉 prepared at t = 0 is
let to evolve for a time t > 0 under the Hamiltonian Ĥ1. The resulting state is then evolved
backwards under the Hamiltonian Ĥ2 till the time t = 0. Since the system is not isolated
from the environment (bath) there are unavoidable differences between the Hamiltonians
Ĥ1 and Ĥ2 and therefore F(t) is expected to decay as the time t increases. In this interpreta-
tion F(t) is the return probability, a measure for the reversibility of the dynamical evolution.
This is the picture described by [125] which was inspired by some nuclear magnetic res-
onance experiments [160]. These experiments explore the scenario that – under certain
circumstances – it is possible to evolve a complex quantum system backwards in time. This
follows the spirit of the gedanken experiment at the origin of the Boltzmann-Loschmidt
controversy [16] and for that reason F(t) is also called Loschmidt echo.

81



5. Fidelity

5.3. Fidelity of cold atoms in an optical lattice:
Theoretical background

In this section we present the theoretical predictions for the temporal decay of the fidelity
F(t) of cold atoms loaded in an optical lattice or coupled micro-traps subject to perturba-
tions of the coupling: k0 → k0±δk [31]. In the context of OLs this perturbation is readily
achieved by adjusting the intensity of the laser beams that create the lattice. In our analysis,
we consider that

Ĥ1,2 = Ĥ0∓δkB̂ . (5.13)

As in Chapters 3 and 4, the unperturbed Hamiltonian Ĥ0 is given by Eq. (2.39) with k = k0
and B̂ is the coupling operator (see Eq. 3.2).4 This perturbation is similar to a momentum
boost which has recently been investigated [164] in the context of the fidelity. It was found
that – as long as the boost is not too large – the fidelity freezes at some finite value. In the
numerical analysis we will use k0 ≈ 15 and Ũ ≈ 280. If not stated otherwise the number of
particles is N = 230. It is a fixed assumption throughout this work that the perturbation is
classically small δk � δkcl, i.e., the corresponding classical Hamiltonians5 H0, H1, and H2
are generators of classical dynamics of the same nature. Thus we are always in the classical
LRT regime.

The main tool of the analytical considerations will be quantum linear response theory. To
this end we rewrite the fidelity from Eq. (5.1) as

F(t) =
∣∣∣〈ψS

2(t)|ψS
1(t)〉

∣∣∣2 , (5.14)

where the superscript “S” indicates the Schrödinger picture ih̄∂t |ψS
i (t)〉 = Ĥi|ψS

i (t)〉 with
i = 1,2. It is useful to change to the interaction picture |ψS

i (t)〉 = e−iĤ0t/h̄|ψi(t)〉. The
initially prepared states at t = 0 are |ψS

i (0)〉= |ψi(0)〉= |ψ(0)〉. Expanding the Born-series
up to second order we obtain

|ψ1(t)〉= |ψ(0)〉+ i
δk
h̄

tZ
0

dt ′ B̂(t ′)|ψ(0)〉−
(

δk
h̄

)2 tZ
0

dt ′
t1Z

0

dt ′′ B̂(t ′)B̂(t ′′)|ψ(0)〉

|ψ2(t)〉= |ψ(0)〉− i
δk
h̄

tZ
0

dt ′ B̂(t ′)|ψ(0)〉−
(

δk
h̄

)2 tZ
0

dt ′
t1Z

0

dt ′′ B̂(t ′)B̂(t ′′)|ψ(0)〉(5.15)

With the substitutions

Î(t) =
tZ

0

dt ′ B̂(t ′); Ĵ(t) =
tZ

0

dt ′
t ′Z

0

dt ′′ B̂(t ′)B̂(t ′′) (5.16)

4Again, we stress the fact that for an appropriate choice of energy and lattice parameters the BHH trimer can
be chaotic and thus contains the main ingredient to generalize the result to larger lattices (see Section 2.6).

5These are obtained from Eq. 2.23 with vi = 0 and f = 3.
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and using the notation 〈·〉0 = 〈ψ(0)| · |ψ(0)〉 we obtain for the fidelity:

F(t) = |〈ψS
2(t)|ψS

1(t)〉|2

= |〈ψ2(t)|eiH0t/h̄e−iH0t/h̄︸ ︷︷ ︸
=1

|ψ1(t)〉|2

=

∣∣∣∣∣
(
〈ψ(0)|+ i

δk
h̄
〈ψ(0)| Î(t)−

(
δk
h̄

)2

〈ψ(0)| Ĵ(t)

)
(
|ψ(0)〉+ i

δk
h̄

Î(t)|ψ(0)〉−
(

δk
h̄

)2

Ĵ(t) |ψ(0)〉

)∣∣∣∣∣
2

=

∣∣∣∣∣1+2i
δk
h̄
〈Î(t)〉0−2

(
δk
h̄

)2

〈Ĵ(t)〉0−
(

δk
h̄

)2

〈Î2(t)〉0− i
(

δk
h̄

)3

〈Î(t)Ĵ(t)〉0

−i
(

δk
h̄

)3

〈Ĵ(t)Î(t)〉0 +
(

δk
h̄

)4

〈Ĵ2(t)〉0

∣∣∣∣∣
2

= 1−4
(

δk
h̄

)2

〈Ĵ(t)〉0−2
(

δk
h̄

)2

〈Î2(t)〉0 +4
(

δk
h̄

)2

〈Î(t)〉20 +O

((
δk
h̄

)3
)

(5.17)

Expanding the wave functions ψi to higher order and summing up the terms leads to the
exponentiation of the linear response result

F(t) = 1−
(

2
δk
h̄

)2

J(t)+ · · · ≈ e−(2 δk
h̄ )2

J(t) , (5.18)

where J(t) = 〈Ĵ(t)〉0. Eq. (5.18) can be interpreted in terms of a fluctuation-dissipation
relationship [171]. On the left hand side we have the fidelity which describes dissipation
of quantum information and on the right hand side we have an integrated time-correlation
function, i.e., a fluctuating quantity. Another immediate observation by direct inspection
of (5.18) is that the stronger the correlations decay the slower will the fidelity decay and
vice versa [101, 172]. This is somehow counterintuitive as it states that the more chaotic a
system is, the slower is the decay of the fidelity. For classically regular systems on the other
hand, the correlator will generally not decay to zero and thus F(t) will decay much faster.

From Eq. (5.18) it is clear, that the only ingredient in the perturbation theory is the cor-
relator C(τ). As we have seen in Chapter 3, the information of C(τ) is fully encoded in
the bandprofile C̃(ω) of the perturbation matrix B (see Eq. 3.14). Thus we expect that the
improved random matrix theory model (see Section 3.2) which incorporates the structures
in the energy landscape of the perturbation operator B̂ [59] but doesn’t contain higher or-
der correlations is able to reproduce the LRT results. In Fig. 5.3 we present the results of
these simulations. An excellent agreement of the IRMT data with the fidelity calculations
of the BHH (2.39) in the perturbative regime δk < δkprt is evident. This is in accord with

83



5. Fidelity

0 0.05 0.1t
10

-3

10
-2

10
-1

10
0

F(
t)

Num.
Theor.

0 0.01t2
-0.2

-0.1

0

ln
[F

(t
)]

δk=0.5

δk=2.5

δk=0.05

Figure 5.3.: The fidelity F(t) at Ẽ(0)
n = 0.26 for three perturbation strengths: δk = 0.05 < δkqm(upper

curves and inset), δk = 0.5 < δkprt(middle curves), and δk = 2.5 > δkprt(lower curves). Black solid
lines correspond to the exact numerical result obtained from eigenstates of the Hamiltonian Ĥ0
while dash-dotted lines correspond to the theoretical expectation. We have found that within the
perturbative regime, the IRMT calculations coincide with the linear response theory expression from
Eq. (5.18).

our findings for the IRMT in the LDoS (see Figs. 3.14a, b) and the wavepacket dynamics
studies (see Figs. 4.4, 4.7a) presented in the previous two chapters. Therefore we come to
the conclusion that within the perturbative regime LRT and IRMT are equivalent not only
for “static” quantities (like the LDoS) but also for complex time-evolution schemes (like the
fidelity). At the same time the IRMT modeling cannot describe the quantum results in the
non-perturbative regime. Here, the echoes are related to subtler correlations of dynamical
nature (self-trapping). These go beyond the autocorrelation function C(τ) that determines
the bandprofile and therfore cannot be captured by LRT or the IRMT modeling.

Coming back to Eq. (5.18), we mark that it is not restricted to short times. The condition
for its applicability is that the perturbation δk is sufficiently small so that 1−F(t) � 1.
Specifically, for quantum mechanically small perturbations δk ≤ δkqm ∼ ∆/σ Eq. (5.18)
implies a short time Gaussian decay F(t) = exp[−8C(0)(δk · t/h̄)2], which evolves into a
long time Gaussian decay (see inset of Fig. 5.3) [20, 66, 99, 101, 123, 171]

F(t)≈ e−( σδk
h̄ )2t2

. (5.19)

The decay of F(t) for small perturbations δk ≤ δkqm is the same irrespective of the nature
(integrable or chaotic) of the underlying classical dynamics. In order to derive the above
equation we used the fact that the transitions occur only between neighboring levels.6

In the case where the perturbation mixes levels in a distance larger than the mean level

6For the evaluation of C(τ≈ 0) =
R

ω0
−ω0

dω C̃(ω) in the standard perturbative regime we assume that ω0 ∼ ∆

h̄ .
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spacing ∆ but still smaller than the bandwidth ∆b (Wigner perturbative regime) δkqm ≤ δk≤
δkprt ∼ Ũ/N we have to distinguish short- and long-time behavior as the correlation function
decays sufficiently fast for t > τcl while it is assumed to be constant for short times. If the
bandprofile of the perturbation operator B were flat, we would expect [20, 66, 99, 101, 123,
171] an exponential decay F(t) ∼ e−2Γt . The rate Γ ∼ (σδk)2/∆ is given by the width of
the Local Density of States (LDoS) [114] studied in Chapter 3. As a result we get

F(t) =

 1− (σδk
h̄ )2t2 for short times t < τcl

1− (σδk)2

h̄
t
∆
≈ exp

[
− (σδk)2

h̄
t
∆

]
for large times t > τcl

. (5.20)

We note that the parabolic decay is present for any perturbation strength at sufficiently short
times.

For even stronger perturbations δk > δkprt, we enter the semiclassical regime [20,66,123].
As we have seen in Chapter 3 the non-perturbative regime coincides with the semiclassical
limit since δkprt ∼ Ũ/N → 0 in the limit N � 1 (while Ũ = const. [114]). Then for any
fixed perturbation δk, eventually δk � δkprt. In this regime (and provided that the classical
dynamics is chaotic) it was found recently [20,66,123,125,213] that the exponential decay
persists but that the decay rate approaches some semiclassical value γSC

F(t)∼ e−γSCt . (5.21)

In some cases 7, γSC was found to be equal to the classical Lyapunov exponent Λ [125].
This result raised a lot of research activity within the last years, since on the one hand
the classical dynamics (Λ) manifests itself in quantum evolution, and on the other hand
suggests a perturbation independent dephasing rate. However, we would like to point out
that the study of the general conditions for having a fingerprint of the classical Lyapunov
exponent in quantum fidelity experiments is not yet settled and surprises are possible as we
will see in the next section.

In the deep non-perturbative regime the quantum-classical correspondence may become
strong enough so that one can rely on purely classical calculations. The classical fidelity is
then defined as

Fcl(t) =
Z
Ω

dx ρ−δk(x, t)ρ+δk(x, t) (5.22)

where ρ±δk is the classical density function evolved under H (k0±δk) (see footnote 5) and
the integration is performed over the whole phase space8 Ω. This means that the classical
fidelity Fcl(t) is defined as the fractional overlap of the two phase-space densities that result
from the propagation of an initial phase-space volume under H (k0±δk) (see Fig. 5.4).

7In fact, the perturbation-independent decay of F(t) appears only for some special sets of initial states, like
narrow wave packets [66, 123]. This has to be contrasted with the perturbative regime δk < δkprt, where
the F(t)-decay is qualitatively the same for any initial preparation.

8In the actual calculation the integration is done over an energy shell of width dE. We have checked that the
numerical procedure is stable with respect to dE.

85



5. Fidelity

H1

H2

x

p

Figure 5.4.: Scheme of the classical fidelity cal-
culation: an initial phase-space volume (circle) is
evolved under the two Hamiltonians H1,H2. The
classical fidelity Fcl(t) is defined as the fractional
overlap (grey shaded area) of the two phase-space
volumes that result from the propagation.

5.4. Numerical analysis of the fidelity

Complementary to the previous section, we here present the numerical studies of the tempo-
ral decay of the fidelity F(t) for the Bose-Hubbard Hamiltonian. The perturbation is applied
to the coupling between lattice sites: k0 → k0±δk, hence we consider Ĥ1,2 = Ĥ0∓δkB̂. 9

Once again we note that the perturbation is classically small δk � δkcl, thus we are always
in the classical LRT regime. Quantum mechanically, we work in the Ĥ0 eigenbasis. The
initial preparation |ψ0〉 is chosen to be either a single eigenstate of Ĥ0 or a Gaussian su-
perposition of eigenstates centered at energy E0. We will investigate the fidelity decay in
various energy regimes where the underlying classical dynamics is qualitatively different.

Our main results are summarized in Fig. 5.5 where we plot the fidelity F(t) as function
of time for various perturbation strengths δk. The new striking feature is the appearance
of echoes at multiples of techo. By analyzing the energy landscape of the perturbation op-
erator we are able to identify techo and control the echo efficiency by an appropriate choice
of the initial preparation. For moderate perturbations δk < δkprt, linear response theory as
discussed in the previous section can reproduce these echoes. This is demonstrated by ap-
plying the IMRT modeling which incorporates the semiclassical structures in the energy
landscape of the perturbation matrix B. For larger perturbations δk > δkprt we rely on the
(semi-)classical considerations presented above. We show that the trajectories leading to
fidelity echoes become more abundant at high energies, in contrast to recent experimental
results on echo spectroscopy on ultra-cold atoms in atom-optics billiards [5] where it was
found that the echoes do not survive in the strong perturbation limit. Our analysis indicates
that this is due to self-trapping phenomena [75,131,173,214] and reflects a generic property
of interacting bosons loaded on a lattice.

5.4.1. Fidelity decay before the first revival

We start with the discussion of the fidelity decay before the first revival takes place. For
some representative plots of the fidelity see Figs. 5.8(d-f). In the chaotic regime, for small

9See around Eq. (5.13) for a detailed description of the setup and the used parameters.
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Figure 5.5.: Parametric evolution of the fidelity F(t) for different perturbation strengths δk as a
function of time. The initial preparation |ψ0〉 is an eigenstate of the Hamiltonian Ĥ0 at Ẽ(0)

n = 0.26.
The fidelity exhibits echoes at multiples of t = techo. Here the Heisenberg time is tH ' 0.55.

perturbations δk < δkprt we observe an initial parabolic (Gaussian) decay which is followed
by an exponential decay thus confirming the validity of the above theoretical expectations
(5.20) for the BHH. In order to quantify this statement we fit the initial fidelity decay with a
Gaussian F(t)∼ exp[−γGt2] and the following decay with an exponential function F(t)∼
exp[−γexpt]. In Fig. 5.6 we report both decay rates as a function of δk. For the Gaussian
decay we find γG ∝ δk2 which is in excellent agreement with the theoretical prediction
(5.20). Also in case of the exponential decay rates γexp would have expected a quadratic
behavior γexp ∝ δk2 [123]. This expectation is based on the study of the LDoS which was
discussed in Chapter 3: in the perturbative regime the LDoS is assumed to have a Lorentzian
shape (3.24) with a width Γ ∼ δk2/∆ reflecting Fermi’s golden rule. Although the LDoS
shape of the BHH is not strictly Lorentzian10 one can still detect the general features (core-
tail structure). In Chapter 3 the core-width Γof the LDoS for our specific model was found
to scale as Γ ∝ δkα with α = 1.9±0.1. However, we observe deviations from the quadratic

10The Lorentzian shape is a special case of the simplified WBRM model which assumes a flat bandprofile
(see Section 3.4).
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Figure 5.6.: The decay rates γ of the fidelity F(t) for an initial eigenstate of Ĥ0 in the Wigner
perturbative regime for Ẽ(0)

n = 0.26 (chaotic regime). The circles correspond to the initial Gaussian
decay while the diamonds represent the decay rates of the exponential decay that follows the initial
Gaussian. The dashed line is drawn to guide the eye and has slope 2.

behavior of γexp especially for larger δk values. We attribute them to the fitting process which
is prone to errors in the regime of large perturbations for the system sizes used here.

In the remainder of this subsection we will focus on the non-perturbative regime. We
start with the discussion of the chaotic regime. Here, we observe that for δk > δkprt the
initially fast exponential fidelity decay is followed by a (slower) second exponential decay
(see inset of Fig. 5.7). The corresponding decay rates γ1,2 are shown in Fig. 5.7 (the dashed
lines have slope 1 and are drawn to guide the eye). While γ1 increases linearly with the per-
turbation strength δk, the decay rate γ2 saturates to the Lyapunov decay of the underlying
classical dynamics. This behavior results from two different mechanisms: the fast initial
decay originates from the deformation of the energy surfaces. The width δE of the resulting
energy shell is the largest energy scale of the system; it is given by the distance of the un-
perturbed Hamiltonian Ĥ0 from the Hamiltonians Ĥ1,2 yielding δE ∼ δk and consequently
γ1 ∼ δk [213]. The second mechanism becomes relevant, once the energy shell is explored.
Then, the further evolution depends mainly on the underlying classical dynamics of the
system and the fidelity decay rate is given by the maximum Lyapunov exponent [125].

Less clear is the situation for (predominantly) integrable systems for perturbation strengths
δk > δkprt: depending on the initial state, the fidelity decays either faster than Gaussian
(when the perturbation changes the frequencies of the phase-space tori) [169, 172], or in a
power law fashion, when the primary effect of the perturbation is to change the shape of
the phase-space tori [122]. Indeed, our numerical results for the BHH in the predominantly
integrable regime (high energies) confirm the above expectation (see Figs. 5.8f, 5.9). In the
latter figure we overplot also the classical fidelity Fcl(t). Although the quantum and classical
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Figure 5.7.: The decay rates γ1,2 of the fidelity F(t) for the initial eigenstate of Ĥ0 in the non-
perturbative regime for Ẽ(0)

n = 0.26. The dashed lines have slope 1 and are drawn to guide the eye.
The inset shows an exemplary decay of F(t) for δk = 2.5.

calculations – as far as the echoes are concerned – agree quite well (see next subsection), a
surprising discrepancy in the decay between F(t) and Fcl(t) for small times is also evident.
In contrast to the chaotic regimes (lower energies), where for δk > δkprt the fidelity decay
was exponential with a rate given by the classical Lyapunov exponent, here

Fcl(t)∼ t−α , (5.23)

while the quantum fidelity decays as

F(t)∼ t−3α/2 . (5.24)

The power law decay is a signature of classically (predominantly) integrable dynamics
while the anomalous (faster) quantum decay is a pure quantum phenomenon, as was pointed
out in [122]. According to the prediction of [123], the classical power law exponent had
to be α = d, where d = 3 is the dimensionality of the system. In fact, in the case of
the BHH trimer model (2.23) we have a six-dimensional phase space with two constants
of motion, namely the total number of particles N and the energy E and thus deff = 2 11.
However, in the high energy regime, the dynamics is dictated by self-trapping phenomena,
leading to localization of particles in one site (see also Section 4.4). Therefore the effective
dimensionality of the system described by the Hamiltonian (2.23) is deff = 1. Indeed, the
best linear fit to the numerical data yields α = 1, thus confirming the above argument.
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Figure 5.8.: The quantum bandprofile 〈|Bnm|2〉Ũ/N2∆ and classical power spectrum C̃(ω) (drawn
with dashed and solid lines respectively) at various eigenvalues Ẽ(0)

n of the reference Hamiltonian
H0: a) Ẽ(0)

n = 0.22, b) Ẽ(0)
n = 0.26, c) Ẽ(0)

n = 0.39. In panels d)-f) we plot the corresponding fidelity
F(t) for three representative values δk < δkqm (dashed-dotted line, deep perturbative regime), δkqm <
δk < δkprt (dashed line, perturbative regime), and δk > δkprt (solid line, non-perturbative regime).
The respective numerical values are for d) and e) δk = 0.1,0.5,2.5, and for f) δk = 0.5,2.5,7.5. The
initial preparation is an eigenstate of H0. The vertical dashed lines in sub-figures d)-f) denote the
revival time techo while in a)-c) they denote the corresponding frequency ωecho = 2π/techo.

5.4.2. Fidelity echoes

As discussed previously, a striking feature is the appearance of echo revivals in the fi-
delity F(t). These are not trivial recurrences due to the discreteness of the spectrum [197].
Rather they reflect the underlying classical dynamics of the system. In order to gain some
insight we turn first to the analysis of the perturbation matrix B which generates the dynam-
ics. In Figs. 5.8a)-c) we show the bandprofile 〈|Bnm|2〉E (dashed line) for various energy
regimes E. As seen in the last chapters the bandprofile is not flat, but exhibits pronounced
structures within the bandwidth ∆b. Furthermore we observe that the position ωecho of the
side-bands increases as we increase the energy E. As a result the correlator C(τ) (see
Eqs. (5.17, 5.18)) oscillates, leading to strong fidelity echoes at multiples of a characteris-
tic time techo = 2π/ωecho. In Figs. 5.8(d-f) the revival time techo is denoted by vertical dashed
lines while in the left column of Fig. 5.8 they represent the corresponding frequency ωecho.

11This is in agreement with the h̄-dependence of the perturbative borders δkqm and δkprt found for the LDoS.
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Figure 5.9.: The quantum (blue line) fidelity decay F(t) at Ẽ(0)
n = 0.39, plotted together with the

corresponding classical (black line) fidelity decay Fcl(t), calculated from Eq. (5.22). The perturba-
tion strength is δk = 7.5 > δkprt. The dashed lines are the best least square fits and are drawn to guide
the eye. The upper one corresponds to t−1.46 while the lower one corresponds to t−0.99.

One clearly observes the agreement of ωecho with the position of the side-bands. These
echoes are different from the standard mesoscopic echoes at the Heisenberg time tH = 1/∆

of quantum systems with chaotic classical dynamics [197]. They are instead associated with
"non-universal" structures that dominate the bandprofile of the perturbation matrix B and
are the fingerprints of the lattice confinement. Quantum mechanically, these are reflected
in selection rules that determine to which states |n(k0±δk)〉 of H1,2 an initial state |ψ0〉 is
coupled.

We consider the case where the initial preparation |ψ0〉 = |m(k0)〉 is an eigenstate of
H0 corresponding to an eigenvalue E(0)

m . Here, the information about the coupling of the
initial states to the perturbed states |n(k0 ± δk)〉 is encoded in the structure of the LDoS
(see Eq. (3.20)). For δk ≤ δkprt the LDoS has a core-tail structure (3.24) with a core-width
Γ≈ (σδk)2/∆≤ ∆b indicating the energy regime where most of the probability is contained
[114]. For short times t ≤ Γ−1, this core will not have time to dephase/decay. Therefore,
the fidelity will show large echo recoveries at the time the side-bands have acquired a phase
of 2π, if techo � Γ−1. The numerical data for δk ≤ δkprt reported in Figs. 5.8d-f (see dashed
lines) confirm this prediction. We see that the echo efficiency (i.e. the recovery level of
F(t)) increases as techo becomes smaller12. Arguing along the same lines as above, we are
able to explain the reduction of fidelity echoes in the non-perturbative regime, δk > δkprt,
observed in Figs. 5.8d-f (see solid lines). Here, the LDoS covers the whole bandwidth,
spoiling (with respect to the perturbative cases) the echo efficiency.

Similar echoes were experimentally observed for atoms in optical billiards [5] (see

12We have checked that in the cases presented in Figs. 5.8d)-,f) the width Γ remains approximately the same
for corresponding δk-values.
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Figure 5.10.: Experimental study of the fidelity using atoms in an optical billiard (taken from [6]).
The atoms are trapped in a “light-sheet wedge billiard” (panels A,C) consisting of to intersecting
laser beams which represent an effective potential for the atoms (the trap is elongated in the direction
perpendicular to the paper-plane, the atoms are loaded from the top). Depending on the intersection
angle of the lasers, the underlying classical phase space is chaotic (B) or mixed (D). The time-
reversal evolution scheme is imposed using microwave spectroscopy. In the right panels the amount
of particles in the upper state P↑(t) is plotted for various perturbation strengths. In this setup 1−P↑(t)
is proportional to the fidelity amplitude [5, 6]. Revivals are observed for both chaotic and mixed
phase space, but disappear in the limit of strong perturbations.

Fig. 5.10). However, in contrast to our case (see black lines in Figs. 5.8d-f), Ref. [6] was
reporting a total loss of echoes in the semiclassical regime δk≥ δkprt. Looking at Fig. 5.9 we
observe that quantum and classical fidelity calculations agree quite well as far as the echoes
are concerned (the discrepancy on the fidelity decay between F(t) and Fcl(t) for small times
was discussed in the previous subsection). In the following we will use the classical fidelity
Fcl(t) to shed some light on the origin of the echoes observed in the BHH model (2.39) for
δk ≥ δkprt.

The classical trajectories contributing to the ensemble average of the echo are those that
– after evolving forward in time with H1 and then backwards in time with H2 – return
to the vicinity of their initial position. Since H1 and H2 are different in the coupling be-
tween nearby wells, those classical trajectories that do not jump between wells will not
feel the difference in the coupling terms. Therefore they retrace their forward propagation
backwards in time, causing the action integral to vanish. These trapped trajectories give
a perfect contribution to the echo signal. Their existence is due to both the discreteness
and the nonlinearity of the underlying equations of motion. For high enough energies the
configurations where bosons are localized in one lattice site persist for long times as can
be seen from Fig. 5.11. In such cases the bosons are said to be "self-trapped". As a result,
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Figure 5.11.: Time-evolution of N = 230 parti-
cles (bosons) associated with various energy con-
figurations: (a) Ẽ = 0.06 close to the ground state
(equipartition) of the system; (b) Ẽ = 0.26 cor-
responding to a state in the middle of the energy
spectrum and (c) Ẽ = 0.39 associated with a high
energy state. The red line indicates the accessi-
ble phase space if all particles were on the corre-
sponding site. Note that as the energy increases,
the likelihood of "trapping" particles, i.e. parti-
cles that are initially localized in one site (in the
specific case i = 1) and stay there for long times,
increases.
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Figure 5.12.: The quantum (blue line) fidelity de-
cay F(t) plotted together with the corresponding
classical (black line) fidelity decay Fcl(t), calcu-
lated from Eq. (5.22) for the energies Ẽ(0)

n = 0.39
(a), Ẽ(0)

n = 0.5(b). The perturbation strength is in
both cases δk = 7.5 > δkprt. In the lower panel (c)
we plot the classical action I1(t) (i.e., the normal-
ized population at site #1) corresponding to the
data in panel (b). One observes that the oscilla-
tions in the population coincide with the revivals
of the fidelity. The different degree of quantum-
classical agreement in panels (a),(b) results from
a stronger numerical averaging in the upper panel.

the echo efficiency is increased in agreement with the numerical simulations presented in
Figs. 5.8(d-f). We note that for even higher energies one can achieve an echo efficiency of
almost a 100%: in Fig. 5.12 we compare the the data from Fig. 5.9 (upper panel) with the
results for the most excited states of the system at Ẽ = 0.5 (middle panel). In the lower
panel of Fig. 5.12 we report the corresponding normalized population I1(t) of site 1. One
observes that these highly excited states represent system configurations where almost all
particles are trapped in one site (here site #1) throughout the time evolution exhibiting only
small fluctuations in the site occupation.

Finally, we are going address the question how the echo efficiency is affected if the initial
preparation |ψ0〉 is not a single delta state. To this end we calculate the fidelity F(t) for the
case where |ψ0〉 is a superposition of eigenstates of Ĥ0 with a Gaussian weight around some
energy E0. The numerical data for both the perturbative and the non-perturbative regime
and energy Ẽ0 = 0.26 are reported in Fig. 5.13. For comparison, we overplot the previous
calculation for a single eigenstate of Ĥ0 with a solid black line. One observes that as the
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Figure 5.13.: The fidelity F(t) at Ẽ(0)
n = 0.26 for various initial conditions and δk = 0.5 < δkprt

(a), δk = 2.5 > δkprt (b). The black solid line corresponds to a delta initial state while the dashed
lines correspond to Gaussian states centered around the same energy Ẽ(0)

n with variance σ2
G = 1

(red dashed), σ2
G = 10 (blue dash-dotted), and σ2

G = 100 (green double-dash-dotted) respectively.
One observes that the echo-efficiency is suppressed as the variance σ2

G is increased. In the non-
perturbative regime (b) the effect becomes more pronounced. See text for details.

width σ2
G of the Gaussian preparation increases the echo-efficiency is decreased. Once

the width σ2
G is large enough such that the participating eigenstates of H0 span an energy

window which is wider than δE over which the bandprofile of B is constant (see for example
Figs. 5.8a-c), the echo is suppressed. This is due to destructive interferences resulting from
states located at various parts of the spectrum where the band-structure – and accordingly
ωecho – is different. The decrease in the echo efficiency becomes more pronounced in the
non-perturbative regime where already for small variances σ2

G no sign of echo is observed
(see Fig. 5.13b).

5.5. Conclusions

In this chapter we have studied the fidelity decay F(t) for the Bose-Hubbard Hamilto-
nian. In particular, we have found a new striking feature, namely the appearance of fi-
delity echoes at multiples of techo which persist from the FOPT (δk < δkqm) to the deep
non-perturbative regime (δk > δkprt). By analyzing the energy landscape of the perturbation
operator B we were able to identify techo and control the echo efficiency by an appropriate
choice of the initial preparation. For moderate perturbations δk < δkprt, the IRMT modeling
which incorporates the semiclassical structures of the perturbation operator could repro-
duce these echoes, while for larger perturbations δk > δkprt we relied on the classical fidelity
Fcl(t). We showed that the trajectories leading to fidelity echoes become more abundant at
high energies, in contrast to recent experimental results on echo spectroscopy on ultra-cold
atoms in atom-optics billiards [5] where it was found that the echoes do not survive in the
strong perturbation limit. Our analysis indicates that this is due to self-trapping phenom-
ena [75, 131, 173, 214] and reflects a generic property of interacting bosons loaded on a
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lattice. Therefore the reported results are expected to be applicable for larger lattices f > 3
as well, although the above analysis is focused on the f = 3 case. Furthermore, due to the
connection between fidelity decay and loss of coherence [65,100], our findings can be used
to engineer coherence echoes of a central system coupled to a quantum bath consisting of
cold atoms in an optical lattice [5, 178].

95



5. Fidelity

96
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A major advantage of BEC based devices, as compared to conventional solid-state struc-
tures, lies in the extraordinary degree of precision and control that is available, regarding
not only the confining potential, but also the strength of the interaction between the parti-
cles, their preparation, and the measurement of the atomic cloud. The realization of atom
chips [108,175,200], “conveyor belts” [109], atom diodes and transistors [149,188,195] is
considered a major breakthrough with potential applications in the field of quantum infor-
mation processing [183], atom interferometry [10,186,204] and lasers [107,132,148,190].

Here we propose a BEC stirring device [113] based on the BHH trimer which can be re-
garded as the incorporation of a quantum pump in a closed system: it produces an adiabatic
DC current in response to a cyclic change of two control parameters of the (optical) lattice
confining the atoms. We believe that the proposed stirring device [144,174] can be realized
using to-date optical lattice technology [3]. The actual measurement of induced neutral
currents poses a challenge to experimentalists. However, various techniques have been pro-
posed for this purpose. For example one can exploit the Doppler effect at the perpendicular
direction, which is known as the rotational frequency shift [29].

Quantum pumping/stirring represents a special case of driven systems and hence is closely
related to the notion of parametric Hamiltonians introduced in Chapter 3. In contrast to the
previous chapters we consider here adiabatically slow driving where dissipation is not an
issue. In this case the generated current is determined by the “adiabatic transport” which
is sometimes also referred to as “geometric conductance” in the theory of the Berry phase.
We treat the problem using the Kubo formalism. Our results indicate that the resulting atom
current can be extremely well controlled. We find [113] that the nature of the transport pro-
cess depends crucially on the sign and on the strength of the interatomic interactions We
can distinguish four regimes of dynamical behavior. For strong repulsive interaction the
particles are transported one-by-one, which we call sequential crossing. For weaker repul-
sive interaction we observe either gradual crossing or coherent mega crossing. Finally, for
strong attractive interaction the particles are glued together and behave like a huge classical
ball that rolls from trap to trap.

This chapter is organized as follows: in the next section we introduce the proposed pump-
ing cycle and its implementation using the BHH trimer model. Then we briefly review the
Kubo formula approach to quantum pumping [54] which is based on the theory of adia-
batic processes [15, 25, 27]. In Section 6.3 we present our results for the BHH trimer. We
begin with the “two-orbital approximation” of a single-particle three-site system and then
derive [113] analytical expressions for the conductance of the BHH trimer. The chapter
ends with a conclusion.
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Figure 6.1.: Illustration of the model system. Initially, all particles are located on the upper site
(i = 0) which represents the “shuttle”. In the first half of the cycle (a) the on-site potential v0 = ε

is raised adiabatically slow from a very negative initial value and the particles are transported via
the k1 bond to the “canal” which is represented by the strongly coupled canal sites (i = 1,2). In the
second half of the cycle (b) the bias in the coupling is inverted and the particles are transported back
from the canal to the shuttle via the k2 bond.

6.1. Operating an atom pump in a closed system:
the BHH trimer model

The possibility to induce DC currents by periodic (AC) modulation of a potential is familiar
from the context of electronic devices. If an open geometry is concerned, it is referred
to as “quantum pumping” [2, 38, 42, 157, 198, 199], while for closed geometries we use
the term “quantum stirring” [177]. Here we propose the stirring of condensed ultra-cold
atoms [144, 174] due to the periodic variation of the on-site potentials and of the tunneling
rates between adjunct confining traps. The simplest model that captures the physics of
quantum stirring is the BHH trimer [31, 113, 114, 195] which is illustrated in Fig. 6.1. One
site (i = 0) is regarded as a “shuttle” that transports the atoms, while the other two sites
(i = 1,2) are regarded as a two-level “canal”. The Bose-Hubbard Hamiltonian then reads1:

Ĥ =
2

∑
i=0

vin̂i +
U
2

2

∑
i=0

n̂i(n̂i−1)− kc(b̂
†
1b̂2 + b̂†

2b̂1)

−k1(b̂
†
0b̂1 + b̂†

1b̂0)− k2(b̂
†
0b̂2 + b̂†

2b̂0) . (6.1)

Without loss of generality we use mass units such that h̄ = 1, and time units such that intra-
canal hopping amplitude is kc = 1. Below we assume for simplicity that v1 = v2 = 0, and
therefore the single particle canal levels are ε± =±1 (see also Section 6.3.1). We consider
v0 = ε as one control parameter of the pumping cycle, hence the single particle shuttle level
is ε. Below we assume that N|U | � 1.

1For better readability we choose the index of the original BHH (see Eq. (2.10)) to be i = 0,1,2. The
couplings are defined as kc = k12, k1 = k01 = k10, k2 = k02 = k20 and the interaction strength is assumed
to be homogenous, i.e., Ui = U for i = 0,1,2.
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off−plane section along     =0
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Figure 6.2.: Illustration of the pumping cycle. See the text for further details. For a large cycle that
encircles the whole shaded region we have Q ≈ N. The position of the “monopoles” is depicted
by black dots: (a) no interactions (all monopoles are at the same position) (b) with interactions. In
panel (c) we schematically plot the energy levels along the X1 = 0 axis for a system corresponding
to N = 3 bosons.

The couplings between the shuttle and the two ends of the canal are k1 and k2. We assume
that both are much smaller than kc. Their inverse 1/k1 and 1/k2 can be regarded as barrier
heights, and changing them is like switching valves on and off. It is convenient to define
the two control parameters of the pumping as follows:

X1 =
(

1
k2
− 1

k1

)
, X2 = ε. (6.2)

By periodic cycling of the parameters (X1,X2) we can imitate a classical peristaltic mecha-
nism and obtain a non-zero amount (Q) of transported atoms per cycle. The pumping cycle
is illustrated in Figs 6.1, 6.2(a,b). Initially, all the particles are located in the shuttle which
has a sufficiently negative on-site potential energy (X2 < 0). In the first half of the cycle the
coupling is biased in favor of the k1 route (X1 > 0) while X2 is raised until, say, the shuttle
is empty. Then, in the second half of the cycle, the coupling is biased in favor of the k2
route (X1 < 0), while X2 is lowered until the shuttle is again full. If the particles were non-
interacting, i.e. assuming U = 0, the shuttle is depopulated via the k1 route into the lower
energy level ε− during the first half of the cycle, and re-populated via the k2 route during
the second half of the cycle. Accordingly, the net effect is to have a non-zero atom charge
Q. If we had a single particle in the system, the net effect would be to pump roughly one
particle per cycle. If we have N non-interacting particles, the result of the same cycle is to
pump roughly N particles per cycle. We would like to know what is the actual result using a
proper quantum mechanical calculation, and furthermore we would like to investigate what
is the effect of the inter-atomic interaction U on the result.
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6.2. Adiabatic theory

In analogy with Ohm’s law (where X is the magnetic flux, and −Ẋ is the electro motive
force) the atom current is I = −G1Ẋ1 if we change X1 and I = −G2Ẋ2 if we change X2,
where G1 and G2 are elements of the geometric conductance matrix. Accordingly

Q =
I

cycle

Idt =−
I

(G1dX1 +G2dX2). (6.3)

In order to calculate the geometric conductance we use the Kubo formula approach to quan-
tum pumping [54] which is based on the theory of adiabatic processes [15,25,27] (see also
Appendix B for further discussion). It turns out that in the strict adiabatic limit G is related
to the vector field B (also know as “two-form”) in the theory of Berry phase [15, 25, 27].
Namely, using the notations B1 =−G2 and B2 =−G1 we can rewrite Eq. (6.3) as (X3 ≡ 0)

Q =
I

B · ~ds, (6.4)

where we define the normal vector ~ds = (dX2,−dX1) as illustrated in Fig. 6.2a. The ad-
vantage of this point of view results from the intuition that it provides for the result: Q is
related to the flux of a field B which is created by “magnetic charges” in X space. For U = 0
all the “magnetic charge” is concentrated in one point. As the interaction U becomes larger
the “magnetic charge” disintegrates into N elementary “monopoles” (see Fig. 6.2) thereby
quantizing Q. The total charge transported during a cycle then depends on the number of
monopoles that are encircled. In practice, the calculation of B is done using the following
formula:

B j = ∑
n6=n0

2 Im[In0n] F j
nn0

(En−En0)2 , (6.5)

where

Î =
i
2

[
(b̂†

0b̂1− b̂†
1b̂0)+(b̂†

2b̂0− b̂†
0b̂2)

]
(6.6)

is the averaged current along the bonds 0 7→1, 2 7→0 and F̂ j =−∂Ĥ/∂X j is the generalized
force (see Chapter 3.1.2) associated with the control parameter X j. The index n distin-
guishes the eigenstates of the many-body Hamiltonian. We assume from now on that n0 is
the BEC ground state.2

2As we have seen in Sections 2.6.3, 2.6, and 3.4, the underlying classical dynamics of the BHH can have a
chaotic component for intermediate values of the energy E = H . Here, we consider adiabatic driving of
the BHH which is prepared in the ground state, therefore chaotic motion is not an issue.
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6.3. Controlled atom current in the Bose-Hubbard trimer

6.3.1. Two-orbital approximation

In order to derive explicit expressions for the conductance G of the BHH trimer (6.1) we
first consider the case of one particle inside the three-site system (see Fig. 6.1). As we
further explain below we are later going to measure the current between the shuttle (i = 0)
and the canal sites (i = 1,2) on the bonds 0 7→ 1 and 2 7→ 0. The model Hamiltonian and
the current operators in the position basis are:

Ĥ =

 ε −k1 −k2
−k1 0 −1
−k2 −1 0

 , Î07→1 =

 0 −ik1 0
ik1 0 0
0 0 0

 , Î27→0 =

 0 0 ik2
0 0 0

−ik2 0 0

 .

(6.7)
It is convenient to define a shuttle-canal basis which is determined via diagonalization of
the Hamiltonian with vanishing couplings to the canal (k1 = k2 = 0)

|S0〉=

 1
0
0

 , |S〉=
1√
2

 0
1
1

 , |A〉=
1√
2

 0
1
−1

 . (6.8)

The Hamiltonian and the current operator in the shuttle-canal basis are:

Ĥ =

 ε −k̄ −∆k
−k̄ −1 0
−∆k 0 1

 , Î07→1 =
k1√

2

 0 −i −i
i 0 0
i 0 0

 , Î27→0 =
k2√

2

 0 i −i
−i 0 0
i 0 0

 ,

(6.9)
where we defined the mean values

k̄ =
k1 + k2√

2
(6.10)

∆k =
k1− k2√

2
. (6.11)

The pumping cycle starts with all particles localized in the shuttle (i.e. ε�−1). Therefore
the adiabatic particle transport takes place during the avoided crossing of the shuttle (energy
ε) and the symmetric canal state which has the lower energy ε− =−1 (see Appendix B for
a description of the transport in a two-site system). Accordingly, we focus on the upper left
(2×2)-submatrix leading to the two-orbital approximation

Ĥ
′
=
(

ε −k̄
−k̄ −1

)
, Î

′
07→1 =

k1√
2

(
0 −i
i 0

)
, Î

′
27→0 =

k2√
2

(
0 i
−i 0

)
(6.12)

where dashed symbols (′) denote the reduced operators. We consider the current operator Î
to measure average of the currents in the k1 and in the k2 bonds

Î ≡ 1
2
(Î07→1 + Î27→0) =

∆k

2

(
0 −i
i 0

)
. (6.13)
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The advantage of this definition is that within the two halves of the pumping cycle (ε
raised/lowered) the same amount of particles is transported, i.e. it is a “symmetric” mea-
surement. This allows us to limit the below discussion to, say, the first half of the cycle
where the control parameter ε is raised from a very negative initial value.

Following the same analysis as for the two-site system described in Section B.2 (starting
from Eq. (B.8)) we obtain for the geometric conductance

G2 =−∆k

2k̄
2k̄2

[(ε+1)2 +(2k̄)2]3/2 . (6.14)

For a full cycle we get

〈Q 〉 =
I
〈I 〉dt =

∆k

k̄
=

k1− k2

k1 + k2
. (6.15)

In contrast to the two-site topology, the atomic charge pumped in one cycle can be less
than one, namely when the difference of the coupling strengths ∆k is small compared to the
mean coupling k̄. This is the so-called near-field [189] and corresponds to a small radius R
of the pumping cycle (see Fig. 6.2) and happens if the monopoles (or “magnetic charges”)
are encircled at short distance.

6.3.2. Evolution of energy levels

After the preliminary considerations in the previous subsection we now turn to the analysis
of the many-body problem by investigating the dynamics of the eigenenergies En of the
Bose-Hubbard trimer (6.1) as we change ε from ε � (−1) to ε � (−1) while the other
parameters are fixed. It is convenient to rewrite the BHH as

Ĥ = Ĥshuttle + Ĥcanal + Ĥcpl (6.16)

Ĥshuttle =
U
2

n̂0(n̂−1)+ εn̂0 (6.17)

Ĥcanal =
U
2

[n̂1(n̂1−1)+ n̂2(n̂2−1)]− (b̂†
2b̂1 + b̂†

1b̂2) (6.18)

Ĥcpl = −k1(b̂
†
0b̂1 + b̂†

1b̂0)− k2(b̂
†
0b̂2 + b̂†

2b̂0) (6.19)

while the operators for the current and the generalized force are Î07→1 = ik1(b̂
†
1b̂0− b̂†

0b̂1),
Î27→0 = ik2(b̂

†
0b̂2− b̂†

2b̂0) and F̂ = −n̂0. In what follows we assume 0 < k1,k2 � kc = 1,
ε ∼ (−1), and N|U | � kc = 1 which allows us to apply the “two orbital approximation”
described in Section 6.3.1.

We are interested in the avoided crossings of the evolving ground state with the excited
states (see Eq. (6.5)). In the leading approximation of the eigenenergies En the couplings k1
and k2 are neglected. Later we take them into account as a perturbation. For k1 = k2 = 0 the
the number (n) of particles in the shuttle becomes a good quantum number. Furthermore,
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Figure 6.3.: Integrated density (IDoS) of avoided crossings (“magnetic monopoles”) for various
values of the parameters U , k1, k2 and the boson number N as a function of the rescaled on-site
potential ε̂. The support of the IDoS is predicted by Eq. (6.25) to be ε̂ = [−1,0.5] which is nicely
confirmed.

we assume that only the lower level of the canal ε− is occupied and that the particles are
equidistributed among the canal sites. Accordingly

En = Eshuttle(n)+Ecanal(N−n), n = 0,1,2, ..,N (6.20)

where

Eshuttle(n) = εn+
1
2

Un(n−1) (6.21)

Ecanal(N−n) = −(N−n)+
1
4

U(N−n)(N−n−1) . (6.22)

The degeneracy condition for the n-th crossing is En−En−1 = 0 leading to3

εn =−1+
1
2

U × (N−3n+2) where n = 1,2, ...N . (6.23)

Accordingly, the N level crossings are distributed within a range

−1− (N−1)U ≤ ε ≤ −1+
1
2
(N−1)U . (6.24)

We define the rescaled version of the control variable ε as

ε̂ =
ε+1

(N−1)U
(6.25)

3Note that in (6.23) the index n starts at one since this corresponds to the last particle occupying the canal.
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which has a support of −1 < ε̂ < 1/2. Once we take the coupling k̄ into account, we
get avoided crossings of width δεn (see below). Within the support we should observe N
such avoided crossings if they can be resolved, i.e., if their distance U is large enough. In
Fig. (6.3) we report the integrated density of avoided crossings (IDoS) for various values of
U , k̄, ∆k and boson numbers N that fulfill this condition. We find that all points fall in the
predicted range thus the scaling (6.25) is nicely confirmed.

6.3.3. Two-orbital approximation for the BHH trimer

In complete analogy with Eq. (6.9) the Bose-Hubbard Hamiltonian in the two-orbital ap-
proximation is (say for N = 4):

Ĥ =


E0 −k̄1 0 0 0
−k̄1 E1 −k̄2 0 0

0 −k̄2 E2 −k̄3 0
0 0 −k̄3 E3 −k̄4
0 0 0 −k̄4 E4

 (6.26)

where the En are defined in the previous section, and the couplings are4

k̄n = [(N +1−n)n]1/2 k̄ . (6.27)

The analogous expression applies to the current operator where k̄ is replaced by ∆k. The
idea of the two-orbital approximation is that the full system ground state is composed of
segments. Each crossover from segment to segment in Eq. (6.26) is a (avoided) two-level
crossing. For example the second crossing, i.e. from n = 3→ n = 2, is described by(

E2 −k̄3
−k̄3 E3

)
(6.28)

which is a submatrix of Eq. (6.26). For finite U and sufficiently small k̄n, we encounter a
sequence of distinct avoided crossings as ε is raised from ε�−1 :

|4〉 k̄47−→ |3〉 k̄37−→ |2〉 k̄27−→ |1〉 k̄17−→ |0〉 . (6.29)

Their ε-distance is of order U (see Eq. (6.23)) while their width is5

δεn = k̄n . (6.30)

The widest crossings are at the center of the ε-range, and they are of order δεn ∼ Nk̄.
This should be contrasted with the energy scales U and NU that describe the span of the

4Note that the calculation of k̄n = 〈n−1|Ĥ|n〉 involves the matrix element b̂†
i b̂0 with i = 1,2.

5To see this we minimize the energy distance ∆En = [(En(ε)−En−1(ε))2 +(2k̄n)2]1/2 between the actual
energies taking into account the coupling. This distance ∆En is going to be small as long as the the first
term in the root is smaller than the second one which is fixed with respect to ε.
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Figure 6.4.: Scaling behavior of the conductance G. The conductance −G in the intermediate
regime, for various values the coupling constants k̄, ∆k but constant ratio U/k̄ and N = 16 particles.
The x-axis corresponds to the rescaled control variable ε̂ (6.25) and the y-axis is scaled accordingly
to preserve the net charge. Additionally, the ordinate was scaled by the expected charge Q for a half-
cycle according to Eq. (6.32) and indeed the area under the curve is Q ≈ 0.5. One observes that the
curves fall on top of one another which confirms the dependence of G on the ratio k̄/U . Additionally,
we overplotted the theoretical expression (solid orange line) for the conductance (6.35). Although
this expression is not expected to be valid in the intermediate regime, the agreement is pretty good.
Also the agreement with the estimation from Eq. (6.36) corresponding to a constant value of −G ≈
0.315 is aparent.

crossings. If the widest crossings are lager than the whole span, i.e. UN � Nk̄, not a single
crossing will be resolved, thus we are in what we call the “mega crossing” regime. On the
other hand, if even the widest avoided crossing is smaller than the spacing of the crossings
U , i.e. U � Nk̄, then we are in the “sequential crossing” regime. Thus we deduce the
following regimes:

U � k̄ mega crossing regime
U � Nk̄ sequential crossing regime

We observe that the behavior of the conductance depends on the ratio k̄/U . This is con-
firmed in Fig. 6.4 where we plot G2 for various k̄ and U but constant ratio. If N is not too
large one can resolve a sequence of two level crossings. In the following we discuss the
findings in the various regimes.

6.3.4. Regimes

The predominant contribution to Q results from the dX2 variation6, therefore we refer from
now on to G2 = G only. An overview of the numerical results for the conductance is shown

6If we have an rectangular pumping cycle in X-space, it can be closed at X2 =±∞ where the influence of the
change in X1 can be safely neglected since the monopoles are located on the X1 = 0 axis around ε≈−1.
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Figure 6.5.: Conductance during the first half of the pumping cycle. (a) the conductance G2 as a
function of the on-site potential ε, for various values of U . In the numerical simulations (see also
Fig. 6.6) we are using exact diagonalization of the trimer Hamiltonian (6.1). For the evaluation of
G we use Eq. (6.5) while for Q we use Eq. (6.3). The other parameters are N = 16 particles, k̄ =
0.0003/

√
2 and ∆k = 0.0001/

√
2. As the interaction U becomes larger one observes the crossover

from a single to individual peaks in the conductance. (b), the U-dependence of the integrated charge
Q∗, calculated for wide rectangular cycles for which X2 is varied within [−∞,ε∗]. The values of ε∗

are indicated by arrows of the same color in the main panel.

in Fig. 6.5, where we plot G as a function of X2 for various interaction strengths U . In
Fig. 6.6 more details are presented: besides G we also plot the X2-dependence of the energy
levels and of the site population. Four representative values of U are considered including
also the case of weak attractive interactions, U < 0.

Let us try to understand the observed results. For U = 0 the analytical calculation is just
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Figure 6.6.: Evolution of the energy levels, the site occupation and the conductance. Further details
relating to the data of Fig. 6.5. We refer to four representative values of U , which are indicated
on top of each set of panels. Upper panels: the lowest N + 1 energy levels En which dominate
the conductance G2 are plotted as a function of X2 = ε. The insets represent magnifications of the
indicated areas. Middle panels: the site occupations n0(blue ∆), n1(black ◦), n2(red �). Note the
steps of size 1 for the dot-occupation and 1/2 in the wire-sites occupation in subfigure d. Lower
panels: the corresponding conductance G2 as a function of ε. Numerical results are represented by
solid black lines while the dotted red line corresponds to the analytical result (6.31) in (b) and to
(6.36) in (c), (d).

N times the single particle result (6.14):

G =−N
∆k

2k̄
2k̄2

[(ε− ε−)2 +(2k̄)2]3/2 , (6.31)

which can be expressed as a function of the control parameters (X1,X2). Integrating over a
full cycle one obtains

Q = N
[1+(k̄R)2]1/2−1

k̄R
, (6.32)

where R is the radius of the pumping cycle (see Fig. 6.2a). For small cycles we get

Q≈ Nk̄R/2 , (6.33)

while for large cycles we get the limiting value

Q≈ N . (6.34)

For U = 0 and also for small values of U all the particle cross “together” from the shuttle
orbital to the ε− canal orbital. We call this type of dynamics “mega crossing”.
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Figure 6.7.: Evolution of the energy levels, the site occupation
and the conductance for strong attractive interaction U =−1 (see
Fig. 6.6 for legend). The particles are “glued together” and roll
like a classical ball from the shuttle to the left wire site as can
be seen from the middle panel where the site occupations n0(blue
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For very repulsive interaction (U > 0) we get

G =−∆k

2k̄

N

∑
n=1

2δε2
n

[(ε− εn)2 +(2δεn)2]3/2 , (6.35)

We overplot this formula in the lower panel of Fig. 6.6d) where an excellent agreement is
observed. For intermediate values of U (weak repulsive interaction), namely in the range
k̄ �U � Nk̄, we find neither the sequential crossing of Eq. (6.35), nor the mega-crossing
of Eq. (6.31), but rather a gradual crossing. Namely, in this regime, over a range ∆X2 =
3/2(N−1)U we get a constant geometric conductance:

G ≈ −∆k

k̄
1

3U
(6.36)

which reflects in a simple way the strength of the interaction. This formula has been de-
duced by extrapolating Eq. (6.35), and then was validated numerically (see lower panel of
Fig. 6.6c).

The above scenarios can be also identified by studying the evolution of the energy levels
En as a function of the on-site potential ε. As discussed previously for large positive U
the N-fold “degeneracy” of the U = 0 level crossing is lifted, and we get a sequence of
N avoided crossings (for schematic illustration see Fig. 6.2c, and compare with the numer-
ical results in the upper panels of Fig. 6.6). Also for U < 0 this N-fold “degeneracy” is
lifted, but in a different way: the levels separate in the “vertical” (energy) direction rather
than “horizontally” (see upper panels of Fig. 6.6). In the latter regime all the particles ex-
ecute a single two-level transition from the shuttle to the canal (see Fig. 6.6a). In fact, for
sufficiently strong attractive interactions NU �−1 all the particles are glued together and
behave like a classical ball that rolls from the shuttle to one of the canal sites (see Fig. 6.7).
When the sign of X1 is reversed the ball rolls from one end of the canal to the other end (not
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shown). This should be clearly distinguished from the N-fold degenerated transition to the
lower canal level which is observed in the U=0 case.

6.4. Conclusions

The theoretical [1, 73, 121, 141, 146, 195, 215] and experimental [50, 74] study of driven
dynamics in single and double site systems is state of the art. The study of three-site sys-
tems adds the exciting topological aspect: controlled atomic current can be induced using
optical lattice technology [3]. Our “driven vortex” should be distinguished though from the
ignited stirring of [144, 174]. The actual measurement of induced neutral currents poses
a challenge to experimentalists. In fact, there are a variety of techniques that have been
proposed for this purpose. For example one can exploit the Doppler effect at the perpen-
dicular direction, which is known as the rotational frequency shift [29]. The analysis of
the prototype trimer system reveals the crucial importance of interactions. The interactions
are not merely a perturbation but determine the nature of the transport process. We expect
the induced circulating atomic current to be extremely accurate, which would open the way
to various applications, either as a new metrological standard, or as a component of a new
type of quantum information or processing device.
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7. Bose-Hubbard Dimer with Dissipation

The interplay of intrinsic dynamics with coupling to the continuum, radiation fields or to
any other external influence (such as measurement) is an important subject for various
branches of modern physics: Quantum chaos [97], nanoscale devices [19], quantum op-
tics [147], theory of decoherence and quantum computing [156] up to nuclear [72,145,179],
atomic and molecular physics [153] are some of the areas, seemingly far remote from each
other, that boosted the research in open systems. These systems are often described within
the “effective non-Hermitian Hamiltonian” formalism [145]. The eigenvalues of the effec-
tive Hamiltonian are complex En = En− iΓn/2 with the non-zero imaginary part, describing
the rate with which an eigenstate of the open system (termed resonance state) decays in time
due to the coupling to the “outside world”.

With the advent of sophisticated techniques for trapping and transporting ultracold atoms,
resonance states become an issue also in the context of Bose-Einstein condensates (BEC).
Examples include “atom lasers” [30], optical tweezers [105] and magnetic “conveyor belts”
[109], as well as microtraps on “atom chips” [90], which have been suggested as potential
building blocks for quantum information processing [183]. In this context, the aim is to
understand the scattering and decay properties of a condensate leaking out of the trap via
tunneling.

First theoretical investigations of the waveguide scattering of a BEC through a double
barrier potential, acting like a quantum dot for the atoms, revealed intriguing nonlinear
effects associated with the internal resonances of the quantum dot [161]. Complemen-
tary studies on the decay of a condensate from one open trapping potential were reported
in [151], while a first attempt to study the current relaxation of an ultracold BEC, period-
ically driven with a standing wave of laser light, was performed in [138]. The theoretical
approaches used in these studies were based on the mean field (classical) Gross-Pitaevskii
equation (see Section 2.4).

However, a full quantum many-body study – using the Bose-Hubbard Hamiltonian –
of decaying properties of a BEC is lacking. In this context, the closed two-site system
(dimer) has been analyzed thoroughly and many interesting phenomena have been found
[1, 13, 21, 76, 94, 127, 127, 128, 130, 131, 150, 202]. The richness of the results provides a
motivation to go beyond the closed dimer and consider new scenarios where even richer
behavior should be observed. In this respect, the open quantum dimer promises new and
exciting opportunities, since the coupling to the continuum leads to an interesting interplay
with the internal dynamics.

In this chapter we address such a scenario and study the resonance linewidths Γ of a BHH
coupled to the continuum at one of the two sites [116]. This setup can be realized using two
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7. Bose-Hubbard Dimer with Dissipation

coupled bosonic traps where tunneling to the continuum is imposed on one site. Another
motivation arises from exciton transfer in molecular aggregates in which guest molecules
(traps) are introduced interstitially and excitons are captured once they appear inside the
sphere of influence of the traps [17].

This chapter is structured as follows: In the first two sections we introduce the quantum
dimer model based on the effective Hamiltonian formalism and the corresponding classical
Hamiltonian based on the discrete nonlinear Schrödinger (DNLS) equation. In Section 7.3,
we report our results. We find the appearance of consequent bifurcations in the resonance
widths Γn as we change the on-site interaction strength U which we analyze both quantum
mechanically and classically. The chapter ends with a conclusion.

7.1. Effective Hamiltonian modeling

A usual way to treat the coupling of bound states with the continuum is to exclude the
continuum degrees of freedom from the consideration by the introduction of an effective
Hamiltonian Heff acting within the subspace of bound states and implicitly taking into ac-
count their interaction with the continuum [145]. In the case of a dimer trap, it is natural
to assume that the probability to escape to the continuum is proportional to the number of
the bosons located at the site (say the second one) which is coupled to the continuum with
strength γ. Following this line of argumentation and using the definition of the BHH (see
Eq. 2.10) with f = 2 and on-site potentials v1,2 = 0, we arrive to Heff given by

Ĥeff =
U
2

2

∑
i=1

n̂i(n̂i−1)− k ∑
i6= j

b̂†
i b̂ j− iγb̂†

2b̂2 . (7.1)

We note that a similar effective Hamiltonian was used to study a leaking dimer [134] in
the presence of pumping or a driving light field [193]. The Hamiltonian (7.1) in the fixed
(instantaneous) basis of the eigenstates of N̂ = ∑

2
i=1 n̂i reads

Heff
nm =


U
2

[
n2 +(N−n)2−N

]
− iγ(N−n) n = m,

−k
√

n(N +1−n) n = m+1,

−k
√

(n+1)(N−n) n = m−1,
0 elsewhere.

(7.2)

where n,m = 0,1, . . . ,N. We are interested in its (instantaneous) complex eigenvalues En =
En− iΓn

2 , where En and Γn are the position and the width of the resonances, respectively. The
subindex n indicates the number of bosons on the first (non-dissipative) site. Accordingly,
N−n bosons are on the second (dissipative) site. The rank of Heff is related to the number
of particles as N = N +1 (see also Eq. 2.38). In our numerical analysis we consider traps
with particle numbers N = 10 up to 500.

In order to gain some insight in the parametric evolution of resonance widths, we first
consider the two limiting cases, vanishing interaction U = 0 and very strong interaction
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U � k. In the former case one finds that the eigenvalues En of the effective Hamiltonian
are given by

En = Nγ

(
− i

2
+
(

1−2
n
N

)√
Λ2− 1

4

)
, (7.3)

where Λ ≡ k/γ is a dimensionless ratio. From this expression it follows that for Λ ≥ 1/2
the resonance widths are all degenerate and equal to Nγ (see Fig. 7.1a,b). In contrast, for
Λ < 1/2 the eigenvalues En are imaginary and we do not have any degeneracies for U = 0
(see Fig. 7.1c). We have checked that whenever the widths Γ show degeneracy then the
corresponding positions of resonances En are not degenerate, exhibiting a “dual” behavior
as far as bifurcation points are concerned.

In the opposite limit of U � 1 one can neglect the inter-site hopping term and thus, the
Hamiltonian (7.1) becomes diagonal leading to

En = Nγ

(
U

2Nγ

[
n2 +(N−n)2−N

]
− i
(

1− n
N

))
. (7.4)

Therefore, we obtain N equidistant resonance widths Γn = 2γ(N − n) corresponding to n
particles being trapped on the first site (which resembles the resonance trapping phenomena
known for the non-interacting particles [192]). Naively, one could think that the initial
degeneracy of the resonance widths for Λ≥ 1/2 can be lifted completely by arbitrary small
interaction U . Thus the resonance widths Γn would flow continuously to their limiting
values by increasing U . Below we will see that surprisingly enough this is not the case and
the degeneracy is reduced each time by two at N/2 discrete points.1 In Fig. 7.1 we report
the resonance widths for three representative values of the coupling ratio Λ = 1, 0.5, and
0.4, as a function of the interaction strength. Our numerical data are rescaled according to

Γ̃(k,γ,N)≡ Λ

Nk
Γ = ΦΛ(Ũ), Ũ = UN/k . (7.5)

The points corresponding to the same value of Λ (but different values of k) fall onto the
same smooth curve thus confirming (7.5). In the same figure we report the asymptotic
values given by Eqs. (7.3), (7.4).

7.2. Classical modeling: DNLS with a sink

In order to shed some light on the emergence of the bifurcations and the scaling ansatz (7.5)
we adopt a semiclassical point of view for Hamiltonian (7.1), justified in the limit of N � 1.
Namely, we consider the discrete nonlinear Schrödinger (DNLS) equation with a sink [17]2

H =
U
2
[
| A1 |4 + | A2 |4

]
− k(A∗1A2 +A1A∗2)− iγA∗2A2 , (7.6)

1For odd numbers of bosons, there are (N +1)/2 bifurcation points.
2Note that for γ = 0 this leads to the standard DNLS introduced in Subsection 2.3.1.
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Figure 7.1.: Bifurcation diagram for the rescaled resonance widths Γ̃, vs. the interaction strength
Ũ for three representative coupling ratios: (a) Λ = 1, (b) Λ = 0.5 and (c) Λ = 0.4. Circles (◦) and
diamonds (�) correspond to k = 1 and 0.1 respectively. In this particular example we consider N =
10. The solid lines are drawn for the eye and show the flow of resonance widths as Ũ is changing.
The stars (?) indicate the predicted asymptotic values of the resonance widths (see Eq. (7.3, 7.4)).
The dashed (blue) line is the “classical” result Γ±cl .

The corresponding classical eigenvalue problem reads

EA1 = U | A1 |2 A1− kA2,

EA2 = U | A2 |2 A2− kA1− iγA2, (7.7)

which can be solved exactly. We find that for

Ũ < Ũcr =
√

4−Λ−2 (7.8)
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Figure 7.2.: The bifurcation points Ũm plotted against the scaled index µ (see Eq. 7.11) for repre-
sentative values of the dimensionless ratio Λ = 0.65,1,106. The symbols correspond to different
boson numbers N and different hopping amplitudes k: N = 10,k = 1 (black), N = 30,k = 10 (red),
N = 50,k = 20 (blue). The symbol A corresponds to N = 20,k = 0.1. The solid line indicates the
large N limit of the case Λ = 106, while the dashed line corresponds to the value Λ = 0.5 and a
system size of N = 50. In the inset we show a magnification of the main figure.

there are two “trivial” solutions with a constant (U-independent) value of Γ = Nγ→ Γ̃ = 1.
This corresponds to the particles being equidistributed among the two sites, i.e. |A1|2 =
|A2|2 = N/2. For Ũ > Ũcr two new non-trivial solutions appear with

Γ
±
cl = γN

(
1±
√

1−4/(Ũ2 +Λ−2)
)

(7.9)

corresponding to the non-equal occupations

|A±1 |
2 =

N
2

(
1∓
√

1−4/(Ũ2 +Λ−2)
)

. (7.10)

The classical results are presented also in Fig. 7.1 (see dashed lines). This pitchfork bifur-
cation is the classical analog of the quantum bifurcations discussed above.

7.3. Resonance widths of the BHH dimer

We find that for Λ ≥ Λ∗ = 0.5 all resonances are initially degenerate, as predicted by
Eq.(7.3). As Ũ increases, this degeneracy is lifted by consequent bifurcations. In con-
trary, for Λ ≤ 0.5 we do not observe any initial degeneracy. We note that in the regime
Λ < 0.5 the instantaneous approximation is questionable since the hopping time τk ∼ 1/k is
large compared to the characteristic decay time τγ ∼ 1/γ. In the rest of the section we will
therefore concentrate on the opposite case Λ > 0.5 and analyze the sequences of bifurcation
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Figure 7.3.: Illustration of the bifurcations in resonance widths Γ̃n (main figure) and the associated
site occupation. On the right hand side, the dimer with a sink is schematically plotted as a black
line. The boson configurations associated with the resonance widths Γn are sketched in the corre-
sponding color, e.g. the blue curve represents a state mainly localized on the site that is coupled to
the continuum while the green curve corresponds to equidistribution of particles.

points Ũm, m = 1, . . . ,N/2 which we have extracted from our numerical simulations. They
were identified as the points after which two degenerate resonance widths Γ̃ differ by more
than C/N, where we used C = 0.01. In Fig. 7.2 we report our findings which are scaled
according to

Ũm = fΛ (µ) , µ≡ m−0.5/Λ

N
, (7.11)

where the fΛ represent a set of one parameter scaling functions which depend on Λ. An
excellent agreement is evident. We have checked that our results remain qualitatively the
same if we apply other similar criteria. A side remark is that the resonance positions En
(not shown) bifurcate at the same points Ũm.

Now we focus on the dependence of the scaling function fΛ on the parameter Λ. Our
study has revealed the existence of a sort of transition separating two regimes characterized
by different scaling properties. Namely, we found that at large µ-values (i.e. large Ũ) the
various Λ-curves fall nicely one on top of another, even for Λ = Λ∗, as is clearly demon-
strated in the inset of Fig. 7.2. From our data we were able to estimate that this scaling
of the upper part of the spectrum holds for µ ≥ 0.35. Notice that in the limit of N → ∞ at
the fixed ratio m/N the scaling parameter becomes µ ≈ m/N ,i.e. it is independent of Λ.
In other words, the bifurcations corresponding to large m values take place between states
that are not affected by the inter-site coupling k and the coupling to the continuum γ. In-
deed these states correspond to configurations where the bosons are almost equidistributed
among the two traps. This is also illustrated in Fig. 7.3 for the case of N = 4 bosons.

On the other hand, for µ ≤ 0.3 we see that all curves, corresponding to different values
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Figure 7.4.: The rescaled bifurcation points Ũm/Ũ∗ for three values of Λ = 0.65,1,106. The sym-
bols correspond to different boson numbers N and different hopping amplitudes k (see Fig. 7.2). The
solid line indicates the large N limit of the case Λ = 106. Inset: the extracted scaling parameter Ũ∗

as a function of the dimensionless ratio Λ−1.

of Λ have the same functional form, albeit being shifted downwards with respect to one
another (Fig. 7.2). The curves do coincide, however, when rescaling the bifurcation spectra
as Ũm/Ũ∗ where Ũ∗ is a scaling parameter (Fig. 7.4, main part). We find that the scaling
parameter Ũ∗ depends only on Λ (Fig. 7.4, inset) resulting in a universal one-parameter
scaling for the lower part of bifurcation points according to

Ũm/Ũ∗ = g(µ), Ũ∗ = exp(−1.55/Λ) (7.12)

where g(·) is a universal (Λ-independent) scaling function and the exponent is obtained
from a best fit. We note that the scaling region becomes increasingly small as Λ → Λ∗ and
breaks down totally at Λ = Λ∗. This is the limit where the resonance widths do not show
any degeneracy for U = 0.

7.4. Conclusions

In conclusion we have studied the dependence of resonance widths of an open dimer BHH
system on the strength of the on-site interaction and found a rich bifurcation behavior. Our
results have immediate implications on the dynamics of an open dimer. Specifically, we
expect that the decay of the bosons is not given by a simple exponential as suggested by the
standard rate equation Ṅ =−ΓN with Γ∼ γ being a constant. Instead, our analysis indicates
a more complicated decay since now Γ depends on the remaining particles inside the trap
(see Eq. (7.5) and Fig. 7.1) and thus one has to solve a nonlinear rate equation. However,
the analysis of dynamics of an open BHH system is beyond the scope of this work and is
open for investigation.
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8. Conclusions

In this thesis, we studied interacting bosons on small lattices consisting of a few sites. The
main focus was on their response to external driving fields, their transport and decay prop-
erties. This study allows us, on the one hand, to address fundamental questions of quantum
classical correspondence and, on the other hand, to investigate the implications of interac-
tions in the transport properties of (ultra-)cold atom devices; the latter being suggested as
building blocks of the emerging technology of atomtronics. Both the extraordinary degree
of experimental control and precision in preparation, measurement, and inter-particle inter-
action, as well as the existence of a well-defined classical limit, make these systems an ideal
framework to address such issues. Quantum mechanically, we described bosons on lattices
using a parametric Bose-Hubbard Hamiltonian, the simplest non-trivial quantum model that
takes into account the competition between the interaction energy and the kinetic energy of
the system, while the corresponding classical limit is described by the discrete nonlinear
Schrödinger equation.

In the first part of this thesis, we investigated the energy spreading of the bosonic system
caused by three different driving schemes of the coupling strength between neighboring
sites, namely the LDoS (“sudden case”), the wave-packet dynamics, and the fidelity which
is a measure for quantum irreversibility. We found that in general one has to differentiate
between three parametric regimes: (a) the standard perturbative regime, where basically
all probability is concentrated in the initial level and where first order perturbation theory
yields a valid description; (b) the extended perturbative regime, which is associated with
the appearance of a core-tail structure in the energy profile, characterized by a separation of
scales (the core is of non-perturbative nature, but the tails, which dominate the variance, are
still described by perturbation theory). The essential ingredient in the extended perturbation
theory is the appearance of the new energy scale ∆b. Its existence is a direct consequence
of having a short but finite correlation time in the underlying (chaotic) classical dynamics;
(c) the non-perturbative regime where perturbation theory (to any order) fails. At the same
time, we concluded that the semiclassical limit is contained deep in the non-perturbative
regime. Instead, in the perturbative limit we were able to construct an improved random
matrix theory modeling which incorporates the structured energy landscape and yields a
valid description of the quantum dynamics.

We also showed that the underlying classical lattice dynamics introduces a pronounced
structure in the energy landscape of the perturbation operator. This has important implica-
tions in the theory of driven systems. The most dramatic consequences were observed in
the study of quantum irreversibility. In this case we found the appearance of pronounced
echoes in the fidelity, persistent in the deep non-perturbative (semiclassical) regime. These
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echoes are associated with the so-called self-trapping mechanism. Making use of this ef-
fect, we were able to “engineer” the echoes by preparing the initial state at a specific energy.
We anticipate that similar effects will manifest themselves in cases of persisting (e.g. sinu-
soidal) driving leading to anomalous (nonlinear) dissipation mechanisms. A future research
line will address such issues aiming at developing a response theory which goes beyond the
traditional one-photon absorption scenario.

In the second part of the thesis, we addressed the transport properties of interacting
bosons in the framework of adiabatically slow driving and revealed the fundamental im-
portance of the interactions. We proposed a BEC stirring device based on the three-site
Bose-Hubbard Hamiltonian which can be regarded as the incorporation of a quantum pump
in a closed system. Namely, it produces an adiabatic DC atom current in response to a
cyclic change of two control parameters of the (optical) lattice confining the atoms. Using
the Kubo formalism we found that the nature of the transport process depends crucially
on the sign and on the strength of the interatomic interactions and distinguish between
four regimes of dynamical behavior: (a) for strong repulsive interaction the particles are
transported one-by-one, termed sequential crossing; (b) for weaker repulsive interaction we
observed gradual crossing which (c) turns to coherent mega crossing for the case of vanish-
ing interactions; (d) finally, for strong attractive interaction the particles are glued together
and behave like a huge classical ball that rolls from site to site. We expect the induced
circulating atomic current to be extremely accurate, which would open the way to various
applications, either as a new metrological standard, or as a component of a new type of
quantum information or processing device. Further questions include the effect of lattice
geometries with complex connectivity on the atomic current and the study of fluctuations
(counting statistics).

In the last part, we initiated the investigation of the decay properties of a bosonic lattice
system that is coupled to the continuum on one side. By using the leaking Bose-Hubbard
dimer as a prototype system, we found that the interatomic interaction leads to a rich bifur-
cation behavior in the resonance widths. Specifically, we showed that the decay process is
much more complicated than the one dictated by the standard linear rate equation. Further
efforts are needed to understand better the corresponding decay law.

The rapid experimental developments in the field of interacting bosons, together with
the mounting theoretical efforts to understand their dynamical properties, hold promise for
the discovery of new and exciting phenomena. It is more than certain that tomorrow’s
technology will rely on these achievements since the properties of (ultra-)cold atoms offer
a wide range of applications.
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A. Level Spacing Statistics and the
Semiclassical Bandprofile

A.1. Level spacing statistics of Gaussian ensembles

In experiments, one of the best accessible quantities of a quantum mechanical system is
its energy spectrum. For the hydrogen atom, for example, it can be measured by shining
white light on water steam and recording the wavelengths of the transmitted light in a spec-
troscopy experiment. These experiments were carried out over 100 years ago and led to
the Lyman-, Balmer-, Paschen-series, etc. In 1885 Balmer found empirically an analytic
expression for the wavelengths measured in the experiments. On the theoretical side, we
can calculate the spectra of the hydrogen and even of the helium atom. For heavier elements
(= increasing number of degrees of freedom) this task becomes unsolvable as we have to
deal with non-integrable systems as the energy is the only conserved quantity. Statistical
properties of energy spectra were first investigated in this context of nuclear physics. In
the 1960s, Wigner, Dyson, Metha and others developed random matrix theory in order to
understand the statistical properties of those spectra. What is the key idea of RMT? As the
Hamiltonians of heavy nuclei are usually extremely complicated Wigner assumed that the
corresponding matrix1 H could be substituted by a random matrix ensemble [207,208]. This
is an ensemble of square matrices of size n× n (with the purpose of considering n → ∞).
The matrix elements Hnm are obtained from Gaussian ensembles, thus they are indepen-
dent random numbers except for some symmetry requirements leading to the concept of
universality classes. The systems are then classified into those with/without time-reversal
symmetry and with/without spin-1/2 interaction. In matrix mechanics this translates to an
invariance under orthogonal, unitary and symplectic transformations.2 Following the idea
of universality, the set of all real symmetric matrices with Gaussian distributed elements
will be called Gaussian Orthogonal Ensemble (GOE). In the same way the Gaussian Uni-
tary Ensemble (GUE) and the Gaussian Symplectic Ensemble (GSE) are constructed. Using
such ensembles instead of the matrices belonging to the dynamical systems, Wigner was
able to predict the correct distribution of spacings between the energy levels. At that time,
nuclear physics was already a field of high activity but interest in this theory was enor-
mously renewed with the conjecture of Bohigas, Giannoni and Schmidt (BGS) [34] which
we will quote in the original:

“Spectra of time-reversal-invariant systems whose classical analogs are K
1Matrix representation and block-diagonal form are discussed in Subsection A.1.1.
2Universality classes are discussed in Subsection A.1.2.
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systems show the same fluctuation properties as predicted by GOE [special
case of RMT]. [...] If the conjecture happens to be true, it will then have been
established the universality of the laws of level fluctuations in quantal spectra
already found in nuclei [...]. Then they should also be found in other quantal
systems such as molecules, hadrons, etc. “

Why do we consider this conjecture to be of great importance? Although it was originally
formulated for quantum mechanical systems as nuclei, the BGS conjecture is not limited to
this case but can be applied in a much more general context of quantum chaos: it implies
that RMT should also be applicable to wave systems in the classical realm. To this end, a
lot of experimental evidence confirms this conjecture [196].

Let us have a look at Figure A.1 where an exemplary spectral measure is shown. We
immediately recognize, that all histograms follow the same black solid line. This line cor-
responds to the RMT-prediction for the measure shown. However, the origins of the corre-
sponding spectra differ wildly. On the one hand, we have quantum mechanical systems as
a hydrogen atom in a strong magnetic field (b) and an excited NO2 molecule (c). On the
other hand, there is a mechanical (a), an acoustical (d) and a microwave billiard (e) repre-
senting classical systems. Apart from time-reversal invariance, the presence of chaos is the
common property of the above-mentioned systems. This remarkable observation led to the
idea that the precise form of the interaction in such systems is not relevant for the statisti-
cal properties of spectral measures. These measures are related to the matrix elements of
the corresponding Hamiltonian. Due to the complexity (high order correlations) of chaotic
systems the matrix entries look random. As mentioned above, the basic but very radical
concept of RMT is to forget about the correlations and to use random numbers instead.

In Figure A.1 we have shown one of the most popular spectral measures, the so-called
level spacing distribution. The level spacings Sn of a given Hamiltonian are defined as

Sn =
En+1−En

∆(E)
(A.1)

where the En are the ordered eigenenergies and ∆(E) is the local mean level spacing. We
have seen that the distribution P(S) is the same for a large variety of systems. Thus, we
have just encountered a universal feature which we can use to classify a system. Let us try
to better understand the features of P(S).

We could now present the (lengthy) calculations of Wigner but he himself showed a
more elegant way to obtain the random matrix theory predictions. This is called Wigner’s
surmise and uses 2× 2 -matrices (!) to calculate the distribution function P(S). Here we
will confine ourselves to the GOE and GUE cases. Although we thereby do not obtain the
exact results, our approximation is so good that the maximum deviation never exceeds two
percent (see [106] for details).

Let the Hamiltonian be

H =
(

H11 H12
H∗

12 H22

)
=
(

a+b x+ iy
x− iy a−b

)
a,b,x,y ∈ R . (A.2)
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Figure A.1.: Level spacing distribution for a Sinai billiard (a), a hydrogen atom in a strong magnetic
field (b), the excitation spectrum of an NO2 molecule (c) , the acoustic resonance spectrum of a
Sinai-shaped quartz block (d), the microwave spectrum of a three dimensional chaotic cavity (e),
and the vibration spectrum of a quarter-stadium shaped plate (f). In all cases a Wigner distribution
is found though only in the first three cases the spectra are quantum mechanical in origin. Taken
from [196].

In the GOE the matrix H is real symmetric and y vanishes, while for the GUE y 6= 0. As the
number of eigenvalues is two, there is only one level spacing to be calculated

S = E2−E1 =
√

b2 + x2 + y2 . (A.3)
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Assuming a Gaussian distribution W for the variables b,x and y we obtain
for the GOE (y = 0)

P(S) =
Z ∞Z
−∞

dbdxW (b,x)δ
(

S−
√

b2 + x2
)

= 2π

∞Z
0

dr r
1√
2πσ

e−
r2

2σ2 δ(S− r)

=
√

2π

σ
Se−

S2

2σ2 . (A.4)

The same calculation for the GUE leads to

P(S) =
ZZ ∞Z

−∞

dbdxdyW (b,x,y)δ
(

S−
√

b2 + x2 + y2
)

= 4π

∞Z
0

dr r2 1√
2πσ

e−
r2

2σ2 δ(S− r)

=
√

8π

σ
S2 e−

S2

2σ2 . (A.5)

The good agreement of this theory with experimental results for GOE and GUE systems
is shown in Figure A.2. The system used is a two dimensional chaotic microwave bil-
liard where time-reversal symmetry can be broken by replacing one boundary with a ferro-
magnetic material. Instead of the quantity P(S) we present the integrated distribution I(S)
defined as

I(S) =
SZ

0

dSP(S) (A.6)

A clear difference is observed in the behavior of I(S) for small spacings S regarding the two
universality classes.

For the GSE we would use a 4×4 matrix yielding the result

P(S) =
218

36π3 S4 e−
64
9π

S2
. (A.7)

Let us finally– for the sake of completeness – calculate the level spacing distribution for an
integrable system. In this case the matrix representation of the corresponding Hamiltonian
takes a diagonal form from symmetry considerations alone as described in Section A.1.1.
As each eigenvalue corresponds to its own symmetry class, it is reasonable to assume that
they are uncorrelated. In this case the probability, P(S)dS , to find an eigenvalue in the
interval [S,S+dS ] but not in between can be easily calculated. We divide the interval [0,S]

124



A.1. Level spacing statistics of Gaussian ensembles

Figure A.2.: Integrated level spacing distri-
bution (see Eq.(A.6)) of a GOE (triangles)
and a GUE (circles) system realized in a mi-
crowave experiment [191]. The theoretical
curves are superimposed.

Figure A.3.: Level spacing distribution for the
first 100000 levels of a rectangular billiard. The
dashed line corresponds to a Poisson distribution.
Figure taken from [44].

into N equidistant subintervals (of length S
N ). Since the eigenvalues are uncorrelated, the

probability to find no eigenvalue in the interval [0,S] can be written as limn→∞(1− S
N )N . The

probability to find an eigenvalue in the appended interval [S,S+dS ] is simply dS leading to

P(S)dS = lim
N→∞

(
1− S

N

)N

dS . (A.8)

After performing the limit we obtain the Poisson nearest neighbor distribution

P(S) = e−S . (A.9)

This distribution has been observed in a large number of integrable systems as for example
rectangular billiards studied by Casati et al. [44]. Their results are presented in Figure A.3
where we can clearly see the Poissonian distribution characterized by a high probability for
small spacings.

We summarize now the results for all four classes of systems:3

3The variance of the distribution σ2 has been set according to the normalization of the probability.
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P(S) =



S0 e−S integrable

π

2 S1 e−
π

4 S2
GOE

32
π2 S2 e−

4
π

S2
GUE

218

36π3 S4 e−
64
9π

S2
GSE

. (A.10)

What is the important difference between these distributions? First of all, we see that P(S)
depends strongly whether we have an integrable or a chaotic system. In the first case, small
level spacings are very likely while in the latter they seem to be avoided. This effect is called
level repulsion and we could have seen it already from Eq.(A.3). As mentioned before, for
an integrable system the Hamilton matrix is diagonal. Therefore, the level spacing depends
on only one parameter (b). Due to its distribution, a spacing of S = 0 is most likely to be
observed. For GOE systems the level spacing is already a sum of two Gaussian distributed
positive numbers. As they are independent, it is less probable to have S = 0 leading to linear
level repulsion. In the GUE case three independent random numbers need to vanish while
for the GSE there are five. As we can see from the above expression (A.10), the degree of
level repulsion is dominated by the first term of the distribution, to be more precisely by
the power of S. The power is called the universality index β which takes the values 0, 1, 2
and 4 for the four classes respectively. The level repulsion increases as the symmetry of the
matrix representing the Hamiltonian becomes more complex. In summary we can say that
RMT did very well in predicting the correct level spacing distribution of complex systems.

A.1.1. Symmetry and block matrix representation

In the following many ideas are taken from the introductory book of Stöckmann [196].
Conservative systems play an important role in physics. Here, the Hamiltonian Ĥ does not
depend explicitly on time and therefore the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ (A.11)

can be transformed into the stationary Schrödinger equation

Ĥψn(x, t) = Enψn(x, t) (A.12)

where

ψn(x, t) = ψn(x)eiEnt/h̄ (A.13)
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are the eigenfunctions of Ĥ. Although later in this work, non-conservative processes will be
studied it isn’t necessary to extend the theory to that case as we shall see. For a completely
chaotic system the eigenenergies En are the only constants of motion. We can now expand
the eigenfunctions ψn(x, t) in an arbitrary basis

ψn(x) = ∑
m

anmφm(x). (A.14)

where the basis vectors φn satisfy the orthonormality relation

〈φn|φm〉=
Z

φ
∗
n(x)φm(x)dx = δnm . (A.15)

Here, the symbols 〈·|, |·〉 belong to Dricac’s bra-ket notation. Inserting the expansion
(A.14) into the stationary Schrödinger equation (A.12) we obtain its matrix representation
in the φn basis

∑
m

anmHnm = anEn (A.16)

where

Hnm = 〈φn|Ĥ|φm〉

=
Z

φ
∗
n(x)Ĥφm(x)dx . (A.17)

In this way the problem of solving the Schrödinger equation has been reduced to the task
of diagonalizing the matrix H.

As symmetry is a very successful concept in physics that usually simplifies the problem
we shall now have a look in how far it will be of help for us. What happens to the matrix
representation if the Hamiltonian is invariant under a symmetry operation T : x → x′? The
invariance means that we can define an operator R̂ with

Ĥ(x′) = Ĥ(x)+ R̂Ĥ(x)
de f
= H (x) . (A.18)

This can be expressed via the commutator

[Ĥ, R̂] = 0 . (A.19)

As H is self-adjoint it also commutes with R̂†so that we can assume without loss of gener-
ality that R̂ itself is self-adjoint (if not we construct it for example from (R̂+ R̂†)). Let now
φn,a be a set of basis vectors of R̂

R̂φn,α = rnφn,α (A.20)

where the rn denominate different eigenvalues and φn,α the corresponding eigenfunctions.
Relation (A.19) then becomes

0 = 〈φn,α|ĤR̂− R̂Ĥ|φm,β〉
= (rn− rm)〈φn,α|Ĥ|φm,β〉 (A.21)
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As all eigenvalues have been assumed to be different, the right hand side must vanish for
n 6= m, giving

〈φn,α|Ĥ|φm,β〉= δnmH(n)
α,β (A.22)

where
H(n)

α,β = 〈φn,α|Ĥ|φn,β〉 . (A.23)

With this transformation we achieved that the matrix representation of Ĥ has a block form

H =

 H(1) 0 · · ·
0 H(2) · · ·
...

... . . .

 , (A.24)

and thus, the diagonalization has become less costly. For every further symmetry we can re-
peat this procedure until finally the matrix becomes irreducible. This is especially important
for non-integrable systems (see second-next paragraph).

In classical mechanics every symmetry of the system gives rise to a constant of motion.
The quantum mechanical analog are the quantum numbers. In an integrable system the
number of constants of motion equals the number of degrees of freedom. This is for exam-
ple the case for the hydrogen atom. The electron has three translational degrees of freedom
and one spin degree of freedom. It is unambiguously described by the four quantum num-
bers for energy (n), total angular momentum (l), and the projection of angular momentum
and electron spin onto the z-axis (m,ms). Atomic nuclei of higher order lack such a com-
plete set of quantum numbers and therefore represent typical non-integrable systems. Their
spectra have been studied extensively and the most famous spectral property investigated is
the distribution of the energy level spacings (see Section A.1).

Non-integrable Systems As the eigenvalues of each symmetry are assumed to be un-
correlated, it is not meaningful to mix the spectra of different block matrices H(n) of (A.24)
and then to calculate the level spacing distribution. How superimposing different spectra
can affect the statistics is shown in Figure A.4, where the remaining symmetry is gradually
removed following the subfigures from top to bottom. Therefore, we assume from now on,
that the Hamiltonian Ĥ belongs to only one set of quantum numbers resp. to one symmetry,
i.e., its matrix representation is irreducible. Still, there is another symmetry that has not
been treated up to now which is the symmetry with respect to time.

A.1.2. Universality classes

The time inversion operator T̂inv changes the sign of time t

T̂inv f (t) = f (−t) . (A.25)
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Figure A.4.: Level spacing distribution of the
acoustic resonances of a quartz block. An oc-
tant of a sphere has been removed from one corner
with increasing radius ( a) r = 0mm, b) r = 0.5mm,
c) r = 0.8mm, d) r = 1.1mm, e) r = 1.4mm, f) r =
1.7mm, x) r = 10mm ). The dashed line corre-
sponds to the theoretical prediction of the distri-
bution for a system with a remaining symmetry
while the dotted line applies to a system without
an additional symmetry. Taken from [80].

On the left hand side of the time-dependent Schrödiger equation (A.11) this can be com-
pensated by changing i to −i, i.e., applying the conjugate-complex operator Ĉ. In terms of
commutators this reads

[
ĈT̂inv, ih̄∂t

]
= 0 . (A.26)

Does Ĥ on the right hand side also commute with ĈT̂inv? As we have restricted ourselves
to conservative systems, Ĥ commutes with the time-reversal operator thus reducing the
problem to the commutator [

Ĉ, Ĥ
]
=? . (A.27)

At this point, three situations are possible, leading to the concept of universality classes.
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Let us first consider a Hamiltonian with a non-vanishing vector potential Â

H =
1

2m

(
p̂− e

c
Â
)

+V̂ (x) . (A.28)

The commutator (A.21) differs from zero because p̂ is a complex operator. For this type of
systems the time-reversal symmetry is broken, say by a magnetic field. Nevertheless, Ĥ is
Hermitian leading to

Hnm = H∗
mn . (A.29)

Therefore the matrix elements of H will in general be complex. The Hermiticity of such a
matrix is respected under unitary transformations

H′ = UHU† , (A.30)

where UU† = Id. This will then lead to the notion of unitary ensemble.

The next two possibilities represent systems with time-reversal symmetry but we have to
distinguish between Hamiltonians with or without spin-1/2 interaction. In the first case the
Hamiltonian reads

Ĥ =
h̄2

2m
p̂2 +V̂ (x) . (A.31)

Here the commutator (A.27) vanishes and both operators can be diagonalized in the same
basis. As Ĉ2 = Id the eigenvalues of Ĉ are ±1. Without loss of generality we choose the
eigenfunctions of Ĉ (and therefore also the basis functions φn of Ĥ) to be real. This implies
that also the matrix elements of H are real and because of the Hermitian property this leads
to

Hnm = Hmn . (A.32)

Thus, these systems are represented by real symmetric matrices and the Hermiticity is pre-
served under orthogonal transformations using orthogonal matrices O with OOT = Id

H′ = OHOT . (A.33)

Consequently, these system will be related to orthogonal ensembles.

In the remaining case there is an additional spin-1/2 interaction. The commutator (A.27)
does not vanish since the Hamiltonian now contains complex parts. As these systems are of
no interest in this study we will just present the result. Substituting the Pauli-matrices from
the spin operator with quaternions it is possible to define another operator ˆ̃C that commutes
with Ĥ. This property is preserved unter symplectic transformations

H′ = SHSR (A.34)

where S is a symplectic matrix with SSR = Id and SR being its dual.
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A.1.3. Unfolding spectra

Consider a Hamiltonian with a discrete spectrum

E1 ≤ E2 · · · ≤ En ≤ ·· · (A.35)

where Enare the ordered eigenenergies. To count the number of populated levels at a certain
Energy we introduce the staircase function

N(E) =
∞

∑
i=1

θ(E−Ei) = ∑
Ei≤E

1 = Tr θ(E−H) (A.36)

The density of states g(E)is its derivative

g(E) =
dN
dE

=
∞

∑
i=1

δ(E−Ei) = Tr δ(E−H) (A.37)

Our aim is now to separate the smooth averaged part of N(E) from the oscillating one

N(E) = 〈N(E)〉+Nosc(E) (A.38)

From that definition the averaged density of states is

〈g(E)〉=
d〈N(E)〉

dE
(A.39)

Our main interest lies in the fluctuations around the mean rather than in the mean itself.
Now a problem arises when we want to compare spectra from different systems. How shall
we separate the mean from the oscillations? One method ( [33]) is to map the original
sequence of eigenenergies to a sequence with a constant average density equal to unity, the
so called unfoldingof the spectrum:

Let {Ei}be the original sequence of energies. With

{xi}= {〈N(Ei)〉} (A.40)

we get
〈N(x)〉= x (A.41)

With this mapping we are now in the position to compare properties of different spectra
such as the level spacings Sn.

A.2. Semiclassical bandprofile

Here we rederive a semiclassical expression found by Feingold and Peres in 1986 [85,170]
that relates the power spectrum of the generalized force F to the quantum mechanical
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profile of the corresponding matrix B. Consider the operator B̂ with well-defined classical
limit B . We start with the classical correlator C j(τ) where curly brackets {} j denote the
classical microcanonical average corresponding to energy E j

C j(τ) = {B(τ)B(0)} j
h̄→0= 〈 j|B̂(τ)B̂(0)| j〉

= 〈 j|e
iH0τ

h̄ B̂e
−iH0τ

h̄ B̂| j〉

∑
k
〈 j|eiE jτ/h̄B̂|k〉e−iEkτ/h̄〈k|B̂| j〉

= ∑
k

ei(E j−Ek)τ/h̄|B jk|2 (A.42)

Now we expressed the classical correlator in term of the transition elements B jk = 〈 j|B|k〉.
In the second equality we applied the generalized Shnirelman theorem, which states that in
the semiclassical limit the quantum mechanical expression is equal to the classical average.
Because of the ergodicity, the microcanonical and the temporal average coincide

C j(τ) = lim
T→∞

1
T

T
2Z

− T
2

dt B(τ+ t)B(t) . (A.43)

If we now replace the sum ∑k with the integral
R

dEk g(Ek) , where g(E) is the density of
states, and identify the result with the Fourier back-transform of the the classical power
spectrum, i.e., the correlator

C(τ) =
1

2π

∞Z
−∞

C̃(ω)eiωτdω , (A.44)

we obtain

〈|B jk|2〉 j =
C̃
(

ω = E j−Ek
h̄

)
2πh̄g(Ek)

. (A.45)

This is the orginial result of Feingold and Peres. In order to apply this to the BHH system
and obtain the scaled version of Eq. (3.14) we rewrite the above correlator (A.43) using
B =−∂H

∂k :
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C j(τ) =
Z

dt
∂H
∂k

(τ+ t)
∂H
∂k

(t) ;H̃ =
H

NŨ

= (NŨ)2
Z

dt
∂H̃
∂k

(τ+ t)
∂H̃
∂k

(t) ;λ =
k
Ũ

= N2
Z

dt
∂H̃
∂λ

(τ+ t)
∂H̃
∂λ

(t) ; t̃ = Ũt

=
N2

Ũ

Z
dt̃

∂H̃
∂λ

(τ̃+ t̃)
∂H̃
∂λ

(t̃)

=
N2

Ũ
C
′
(τ̃) . (A.46)

In the last step, C
′
(τ̃) denotes the scaled correlation function. From this we obtain immedi-

ately

C̃(ω) =
N2

Ũ
C̃
′
(ω̃) . (A.47)
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B. Adiabatic Pumping and Transport in a
Two-level System

B.1. Adiabatic pumping

The theoretical description of a quantum pump is closely related to parametric Hamiltonians
H (q, p,X(t)), a concept which was introduced in Chapter 3. In order to generate a current,
the system is driven by changing a control parameter X(t) in time. Let us assume that we
have three independent parameters X = (X1,X2,X3). In Fig. B.1 we show various other
systems that can be used to implement a quantum pump: in the first case (Fig. B.1a) an
atom current is initiated in a ring cavity by moving a scatterer which represents the stir.
Alternatively, one can change the scatterer’s position in a complex quantum graph network
(Fig. B.1b) or vary delta-like potentials that represent two barriers (Fig. B.1c).

The current I that results from the pumping/stirring is given by the derivative of the on-
site population and can be calculated using the Heisenberg equation. Formally, it can be
written as the conjugate force of a ficticious field X3 [54].1 This will be important in the
evaluation of the elements of the geometric conductance matrix (see below). In analogy
with Ohm’s law we get in general

I =−∑
j

G jẊ j , (B.1)

where the G j are elements of the generalized conductance matrix G jk.
Here we are interested in periodic (AC) driving hence the driving cycle is a closed contour

in the parameter (X) space. In order to apply the above formula the driving frequency ω

has to be low enough such that the current depends only on the rates Ẋ j. Then the atomic
charge Q transported in one cycle is given by the contour-integral

Q =
I

cycle

Idt =−
I

GdX . (B.2)

where G = (G1,G2,G3) . If the current in (B.2) has a DC contribution, then we obtain a non-
vanishing net charge Q 6= 0 during one cycle. This constitutes our definition of pumping,

1An example where the force is not ficticious but real is an Aharonov-Bohm geometry where X3 = φ repre-
sents a magnetic flux penetrating the hole of the AB-ring. The time-derivative of the flux φ̇ is proportional
to the electromotive force (EMF) −φ̇ and thereby induces a current I . To see formally that I is the conju-
gate force to φ one considers that the energy increase dE in an AB-ring due to a change in the flux is the
EMF times the charge, i.e. dE =−dX3/dt× I dt =−I dX3.
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a) b) c)

Figure B.1.: Other examples of pumping/stirring schemes. (a) a scatterer, the stir (black disk), is
moved inside a ring-cavity and thereby induces a current, (b) the stir is moved in a complex quantum
graph, and (c) two delta potentials (black dots) are switched on an off thereby imitating a classical
peristaltic mechnism [55].

namely to get a DC current from an AC driving. From the above expression, we deduce
that one needs to change at least two parameters in order to obtain Q 6= 0.2 In the case of
the BHH trimer we change the control parameters X1 and X2 which correspond to the bias
in coupling strength and the on-site potential at site i = 0 respectively while X3 ≡ 0.

B.1.1. The adiabatic equation and the geometric conductance

The leading theory to describe driven systems is linear response theory (see Chapter 3)
which is also used to calculate the conductance. It turns out that the generalized conduc-
tance matrix G jkcan be decomposed [54] in a symmetric and an anti-symmetric part which
account for the dissipative and non-dissipative effect of the driving respectively. Here we
consider a strictly adiabatic driving: although the energy is not a constant of motion the
system returns to the initial state at the end of each cycle. In this case there is no dissipa-
tion thus we consider only the anti-symmetric part of G jk which is also referred to as the
geometric conductance matrix B jk. In order to calculate the geometric conductance we use
the Kubo formula approach to quantum pumping [54] which is based on the theory of adia-
batic processes [15,25, 27]. In the following we show how to obtain B jk from the adiabatic
equation following closely Ref. [53].3

In the instantaneous basis |ψ〉 = ∑n an |n(X(t))〉 the Schrödinger equation ih̄∂t |ψ〉 =
H(X) |ψ〉 becomes

dȧn

dt
= − i

h̄
Enan +

i
h̄ ∑

m
∑

j
Ẋ jA j

nmam (B.3)

where we defined

A j
nm = ih̄〈m| ∂

∂X j
n〉. (B.4)

2In order to get Q 6= 0 from one-parameter driving one has to consider nonlinear driving [55] like quantum
ratchets that we don’t discuss here.

3For a recent review on quantum pumping and the general derivation of the conductance matrix see Ref. [54,
55] and references therein.
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0

|+>

|−>

E

ε0

2k

Figure B.2.: Scheme of the avoided crossing. The two-site
system (B.8) is prepared in the ground state which initially
ε(t = 0)� 0 corresponds to the particle occupying the left
site. As the potential ε is raised the particle encounters an
avoided crossing. Due to the adiabatic driving it stays in the
ground state which for ε � 0 corresponds to the right site,
i.e., the particle is transported during the avoided crossing.

Differentiation by parts of ∂ j〈m(X)|n(X)〉= 0 implies that A j
nm is a Hermitian matrix. We

denote its (real) diagonal elements as A j
n ≡ A j

nn. The latter is associated with a gauge-
invariant “two-form”, defined as [54]

Bk j
n = ∂kA j

n−∂ jAk
n

= −2h̄Im〈∂kn|∂ jn〉

= −2
h̄

Im∑
m

Ak
nmA j

mn (B.5)

Using ∂X j〈m(X)|H |n(X)〉= 0 we find that the off-diagonal elements of A j
nm can be written

as

A j
nm =

ih̄
Em−En

〈n|∂H
∂X j

|m〉=− ih̄F j
nm

Em−En
(B.6)

and hence

Bk j
n = ∑

m6=n

2h̄ Im[F k
nmF j

mn]
(Em−En)2 . (B.7)

In the above formulas F j = − ∂

∂X j
H represents the generalized force corresponding the

parameter X j (see Section 3.1.2).
During each part of the driving we change one parameter X j, ( j = 1,2) at a time while

the second one Xk = X3 is used to measure the current. Namely, we set X3 to be a ficticious
field φ (see above). Then its conjugate force F 3 = I is the current. For the BHH trimer
I is given by Eq. (6.6). Above the index n distinguishes the eigenstates of the many-body
Hamiltonian. Assuming that n = n0 is the BEC ground state we can drop the indices n,k in
Eq. (B.7) and obtain Eq. (6.5).
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B.2. Transport in a two-site system

Consider a single particle system consisting of two sites coupled with a strength k and on-
site potentials v1 = ε/2, v2 =−ε/2. The model Hamiltonian and the current operator in the
position basis are written as

H =
(

ε/2 −k
−k −ε/2

)
, I = k

(
0 −i
i 0

)
. (B.8)

At time t = 0, the control parameter ε is very negative and the particle is on the left site
(i = 1). Then ε is increased adiabatically and the level experiences an avoided crossing
(if k 6= 0). The Landau-Zener transition probability is [139] PLZ = exp

[
−2π

k2

h̄ε̇

]
. In the

following we are working in the adiabatic limit (p = 1−PLZ ≈ 1), i.e., the particle stays
always in the ground state. During the avoided crossing the particle will be transported
from the left to the right site (see Fig. B.2). In the instantaneous basis |ψ〉= ∑n an |n(ε(t))〉
the Schrödinger equation ih̄∂t |ψ〉= H(ε) |ψ〉 becomes

dȧn

dt
= − i

h̄
Enan +

i
h̄ ∑

m
ε̇Anmam (B.9)

Since we are working in the adiabatic limit we can apply time-independent first order per-
turbation theory to the Hamiltonian H ′′ = H + ε̇A where H is given by (B.8) and the
perturbation matrix is:

Anm = ih̄〈n| ∂

∂ε
m〉. (B.10)

We compute the zero-order eigenenergies and eigenstates using standard textbook expres-
sion (see e.g. Cohen-Tannoudji Complement BIV)

E [0]
± = ±1

2
Ω (B.11)

|+[0]〉 =
(

cos(θ

2)
sin(θ

2)

)
(B.12)

|−[0]〉 =
(

sin(θ

2)
−cos(θ

2)

)
(B.13)

where

Ω =
√

ε2 +(2k)2 (B.14)

θ = −arctan
(

2k
ε

)
(B.15)

The expectation value of the current operator I with respect to the zero-order eigenstates
vanishes since the latter are independent of the generalized force F (which is proportional
to ε̇):
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〈+[0] | I |+[0]〉 = ik
(

cos(θ

2)
sin(θ

2)

)(
−sin(θ

2)
cos(θ

2)

)
= 0

= ik
(

sin(θ

2)
−cos(θ

2)

)(
cos(θ

2)
sin(θ

2)

)
= 〈−[0] | I | −[0]〉.

The first order correction to the eigenstates of this two-level system is

|±[1]〉=
〈∓[0]|A|±[0]〉

E [0]
± −E [0]

∓
|∓[0]〉. (B.16)

and with ∂/∂xarctan(x) = 1/(1+ x2) we get ∂θ/∂ε = 2k/Ω2 and find

Amn = ih̄〈m| ∂

∂ε
n〉=

k
Ω2

(
0 −i
i 0

)
. (B.17)

Consequently, to first order, the eigenstates are

|+〉 = |+[0]〉− iε̇
k

Ω3 |−
[0]〉 (B.18)

|−〉 = |−[0]〉− iε̇
k

Ω3 |+
[0]〉 . (B.19)

For these states the expectation value of the current operator becomes non-zero

〈± | I | ±〉 =
[
〈±[0]|+ iε̇

k
Ω3 〈∓

[0]|
]

k
(

0 −i
i 0

) [
|±[0]〉− iε̇

k
Ω3 |∓

[0]〉
]

= ∓2ε̇
k2

Ω3 . (B.20)

Using the notation 〈I〉=−Gε̇, where G is the geometric conductance we get for a prepara-
tion in the ground state

G =− 2k2

[ε2 +(2k)2]3/2 . (B.21)

The charge is obtained by integrating over the time, which becomes an integral over the
ε(t) curve in parameter space. For a ground state preparation we get

〈Q 〉 =
Z
〈I 〉dt =−

Z
Gdε =

ε

2
√

ε2 +(2k)2

∣∣∣∣∣
∞

−∞

= 1 . (B.22)
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