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Abstract

This thesis explores heat transport in harmonic chains with active elements where del-

icately balanced attenuation and amplification of energy is imposed. Using the math-

ematical tools developed in the framework of statistical mechanics and stochastic pro-

cesses, we are able to quantify the non-equilibrium steady state properties (such as the

heat flux) of these systems. We show that they exhibit unique heat transport prop-

erties when coupled to two thermal baths of different temperatures. Specifically, our

study reveals that the heat flux has a negative differential thermal conductance that is

independent of the bath temperatures at the chain ends, and shows non-reciprocal heat

flow with respect to the two baths. We propose an electronic set-up that is capable

of demonstrating the novel qualitative features of our thermal chain. Our results may

pave the way toward new technologies in engineering thermal devices as well as a better

microscopic understanding of heat transport.
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Chapter 1

Introduction

The study of heat transport and the investigation of new schemes for its control is one

of the main challenges of statistical physics and thermal engineering. From a funda-

mental point of view, the question is to understand macroscopic phenomena and their

statistical properties in terms of deterministic microscopic dynamics and, in particular,

to connect macroscopic irreversibility with time reversible microscopic evolution of a

system of interacting particles. On the technological side, there is pressure to engineer

high efficiency thermoelectric materials and design efficient schemes for the control of

heat transport. As a result, the study of heat transport in low dimensional systems such

as atom chains or various nanostructures, has produced many exciting ideas [1–3] rang-

ing from heat rectification [4, 5] to heat logic gates [6]. In fact, some of these exciting

theoretical suggestions have recently been experimentally realized [7, 8]. Despite all this

activity, our understanding of heat transport is far from being settled. For example, it

is still not understood exactly what are the sufficient and necessary conditions in terms

of microscopic dynamics for the validity of Fourier’s law of heat conduction [9]. Even in

linear (harmonic) oscillator chains, energy transport can have various different features,

depending on the (mass) disorder or spectral properties of the heat baths [3].

In contrast to the traditional conservative systems employed in the study of heat trans-
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port, this thesis studies a class of systems that incorporate both attenuation and am-

plification in a balanced manner. Their main characteristic is that they respect the

combined Parity (P) and Time-Reversal (T ) symmetry without being Parity or Time

symmetric separately. This thesis will introduce PT -symmetry in the framework of heat

transport. The main results of this study have been submitted for publication [10].

The structure of this thesis is as follow:

• In Chapter 2, we will introduce the concept of PT -symmetry in the general frame-

work of quantum mechanics and demonstrate the main features using a simple,

realistic model. We will conclude with the presentation of some applications to

systems in the optics framework [11–14].

• In Chapter 3, we will present the basic models and the theoretical grounds on

which heat transport is studied. The concepts of temperature, flux, and thermal

reservoirs will be discussed.

• Chapter 4 introduces the PT -symmetric harmonic chain and its mathematical

description. The spectral and non-equilibrium steady state properties will also be

discussed. The final goal is to obtain a theoretical description of the heat flux.

• In Chapter 5, we will conclude with the main points of the thesis and provide

some future outlook.



Chapter 2

PT -Symmetry

In order for a quantum theory to describe physical systems, it must (i) have an energy

spectrum that is real and bounded from below, (ii) possess a Hilbert space of state

vectors whose inner products have a positive norm, and (iii) have unitary time evolu-

tion [15]. These conditions are all satisfied by a Hermitian Hamiltonian, H = H†. How-

ever, it has been found that not only Hermitian Hamiltonians satisfy these conditions.

Specifically, it has been shown that a PT -symmetric Hamiltonian H (i.e. H commutes

with the combine Parity (P) and Time (T ) operator) can respect all the constrains that

make a quantum theory viable. This notion of PT -symmetry was first introduced by

C. M. Bender and has now been studied in many different fields of physics ranging from

quantum field theory and mathematical physics [15–18] to solid-state physics [19] and

linear [11, 20, 21] and nonlinear [22] optics.

This chapter will introduce the notions of the P and T operators in the general frame-

work of quantum mechanics in section 2.1. Within that section, we will discuss the

properties of the eigenvalues and eigenvectors of the simplest PT -symmetric system,

a two-level system in section 2.1.1. Its dynamical properties will be analyzed in sec-

tion 2.1.2. Next, we will discuss the application of PT -symmetry in optics and present

an experimental realization of the two-level system in section 2.2.1. We will also present

3



Section 2.1. Introduction to PT -symmetry 4

a theoretical result of this system with nonlinearity in section 2.2.2. Lastly, we will sum-

marize in section 2.3. Most of the discussion in this chapter is taken from Ref. [23].

2.1 Introduction to PT -symmetry

Parity (P) and time-reversal (T ) symmetries are fundamental notions in physics. P

is a linear operator that performs a spatial reflection: x̂ → −x̂ and p̂ → −p̂, where x̂

and p̂ are the position and the momentum operator, respectively. The operator T is an

anti-linear operator that performs a complex conjugation: x̂→ x̂, p̂→ −p̂ and i→ −i.

There has been a rising interest in systems that do not obey the individual P and T sym-

metries but which respect the combined PT symmetry [12]. Such systems are described

by a Hamiltonian (H) that commutes with the combined PT operator, i.e. [PT ,H] = 0.

Despite the fact that PT -Hamiltonians can, in general, be non-Hermitian, their spectra

can be entirely real. Therefore, such Hamiltonians can physically model phenomenolog-

ically open systems. The departure from Hermiticity is due to the presence of various

gain/loss mechanisms which occur in a balanced manner, so that the net loss or gain

of “particles” is zero. Furthermore, as some gain/loss parameter γ that controls the

degree of non-Hermiticity of H gets a critical value γPT , a spontaneous PT symmetry

breaking can occur. For γ > γPT , the eigenfunctions of H cease to be eigenfunctions

of the PT -operator, despite the fact that H and the PT -operator commute [15]. This

happens because the PT -operator is anti-linear, and thus the eigenstates of H may or

may not be eigenstates of PT . As a consequence, in the broken PT -symmetric phase,

the spectrum becomes partially or completely complex. The other limiting case, where

both H and PT share the same set of eigenvectors, corresponds to the so-called exact

PT -symmetric phase, in which the spectrum is real (see Appendix C of [23]). The sim-

plest physical model showing PT -symmetric properties is the two level system. In the

next section, we will refer to the physical realizations of this model. We will analyze its

spectra, eigenfunction and dynamical properties. Due to its extraordinary simplicity it
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offers an educational paradigm to understand the basic ideas of PT -symmetry.

2.1.1 The two level system: Eigenvalue and Eigenvector Analysis

One can show (see Appendix D of Ref. [23]) that PT -symmetry requires the real part

of the potential to be an even function of position; whereas the imaginary part is an

odd function. The simplest possible PT -Hamiltonian is illustrated by the following

matrix

H =

 v0 + iγ κ

κ v0 − iγ

 (2.1)

where the parameters v0, γ and κ are real and correspond to the real, and imaginary

part of the potential, and the coupling strength between two energy levels, respectively.

It is obvious that this Hamiltonian is not Hermitian, but one can easily verify that it

is PT -symmetric, where the parity operator, P, is simply the Pauli matrix, σx, and T

performs the complex conjugation.

The eigenvalues of this Hamiltonian can be found via a diagonalization to be

En = εn + iΓn = ±
√
κ2 − γ2 (2.2)

where n = 1, 2 corresponds to the two (+,−) levels. From the above equation, it is clear

that there are two parametric regimes for this Hamiltonian. When γ2 < κ2, the energy

eigenvalues are real (see Appendix C of Ref. [23]). On the other hand, for γ2 > κ2,

the eigenvalues form a complex-conjugate pair (see Appendix A). The sharp transition

from a real to a complex spectrum that take place at γPT = κ, is coined spontaneous

PT -symmetry breaking. These eigenvalues, for κ = 1, are plotted as a function of γ in

Fig. 2.1.

The corresponding normalized eigenvectors take the following form:

|E1〉 =
1√

2 cosα

 ei
α
2

e−i
α
2

 ; |E2〉 =
1√

2 cosα

 ie−i
α
2

−iei
α
2

 (2.3)
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Figure 2.1: Eigenvalues of the simple PT -symmetric system, described by the matrix

model (2.1), as a function of γ. This corresponds to Eq.(2.2) for κ = 1. The red

corresponds to εn while the black corresponds to Γn. For γ > γPT , we enter the broken

PT -phase and the branching of the imaginary part is characterized by the square root

behavior of Eq. (2.2).

where sin(α) = γ
κ . Let us consider these eigenvectors for the cases above and below

the phase transition point, γPT = κ. Below this point, sin(α) < 1, giving α ∈ <. In

this case, we see that these eigenvectors are also the eigenvectors of the PT operator.

The norm, I = |ψ|2, of these two eigenfunctions coincide and is spatially symmetric as

shown by the violet color in Fig. 2.2. On the other hand, above the phase transition

point, sin(α) > 1, i.e. α ∈ =. In this case, they are no longer spatially symmetric as

shown by the blue and orange color in Fig. 2.2 and are not any more eigenfunctions of

the PT -operator.

In fact, for the non-Hermitian Hamiltonian discussed above, the eigenvectors are bi-

orthogonal, i.e. the left and right eigenvectors (〈Ln| and |Rn〉 respectively), defined as



Section 2.1. Introduction to PT -symmetry 7

Figure 2.2: I = |ψ1,2|2 of a PT -symmetric system for γ < γPT and γ > γPT when κ = 1.

The violet corresponds to |ψ1,2|2 for γ < γPT . The blue and the orange correspond to

|ψ1,2|2 for γ < γPT .

〈Ln|H = 〈Ln|En and H|Rn〉 = En|Rn〉, are distinct and 〈Ln| 6= |Rn〉†. Therefore, they

do not respect the standard (Euclidian) ortho-normalization condition. Previously, we

have only referred to the right eigenvectors, namely |En〉 = |Rn〉. It can be shown

however, that in the case of PT -symmetric matrices, the left eigenvector is equal to the

transpose of the corresponding right one (see Appendix B). The normalization constant
1√

2 cosα
is found via the following normalization condition

〈Ln|Rm〉 = δnm, (2.4)

with the following completeness relation,

∑
n

|Rn〉 〈Ln| = 1. (2.5)
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2.1.2 The two level system: Dynamics

The time evolution of a wavefunction ψ(t) = (a(t), b(t))T , that is generated by the

PT -Hamiltonian H of Eq. (2.1) is given by the following set of coupled differential

equations:

i
da(t)
dt

= +iγa(t) + κb(t)

i
db(t)
dt

= −iγb(t) + κa(t) (2.6)

where a(t) and b(t) correspond to the components of the modes and t is the time. The re-

sulting dynamics can be understood by considering its corresponding Hamiltonian (2.1)

in terms of the Pauli Matrix [24]:

H = ωσ̂n̂ (2.7)

in which ω =
√
k2 − γ2 is half of the energy difference, σ̂ is a vector that consisted of

Pauli matrices and n̂ =
(

1
ω

)
(κ, 0, iγ) is a unit vector. Using the matrix identity

Û = exp(−iHt) = cos(ωt)1̂− i sin(ωt)σ̂n̂ (2.8)

where, 1̂ is the unit matrix, a generic initial state evolving under the non-Hermitian

Hamiltonian, Eq. (2.7), takes the following form

|ψ(t)〉 = Û {c1|ψ1〉+ c2|ψ2〉} =
1

cosα

 c1 cos
(
ωt
2 − α

)
− c2i sin

(
ωt
2

)
c2 cos

(
ωt
2 + α

)
− c1i sin

(
ωt
2

)
 , (2.9)

where ψ1 =

 1

0

 and ψ2 =

 0

1

 and c1, c2 are some generic coefficients that

respect the normalization.

The total norm, I(t) = |ψ(t)|2, yields

I(t) =
1

2 cos2 α

(
cos2

(
ωt

2
− α

)
+ 2 sin2

(
ωt

2

)
+ cos2

(
ωt

2
+ α

))
(2.10)

From the above expression, I(t) = 1 for γ = 0 i.e. we have norm conservation as

shown in Fig. 2.3a. In addition, in this (Hermitian) case, a reciprocal norm dynamics is
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observed, i.e. the dynamics starting at one energy level mirrors the dynamics starting at

the other energy level. However, once the system starts to deviate from Hermiticity (i.e.

γ 6= 0), the total norm starts to deviate from 1. In fact, from Eq. (2.10) for the γ < κ

case, we deduce that, the norm, I, oscillates as the square of sinusoidal functions. At

the same time, the norm evolution is not any more reciprocal with respect to the axis of

symmetry of the two level system i.e. the output state depends strongly on which energy

level we have initially excited. This non-reciprocal dynamics is a novel characteristic

of PT -systems and can be of extreme importance for technological applications (like

integrated optical diodes etc.). Nevertheless, one can prove that in this regime of γ < κ,

the total norm is bounded. For γ > κ, we enter the broken PT -symmetric phase. In this

case, ω ∈ = and α ∈ =; thereby making the total norm behave as hyperbolic functions.

In other words, the total norm grows exponentially as seen in Fig. 2.3c. Also in this case,

the norm-dynamics is non-reciprocal. What happens at the spontaneous PT -symmetry

breaking point? Let us recall that the spontaneous PT -symmetry breaking point, γPT ,

occurs when γ = κ. At this transition point, ω = 0 and α = π
2 . Plugging these values

into Eq. (2.10) yields an indeterminate form of 02

02 . Applying L’Hôspital’s Rule twice to

Eq. (2.10) yields the result for the total norm at the transition point: I(t) ∼ t2. As you

can see, we are now able to quantitfy the dynamics of the system in three regimes: the

exact phase (γ < γPT ), the spontaneous PT -symmetry breaking point (γ = γPT ) and

the broken phase (γ > γPT ).

2.2 Applications of PT -Symmetry

Although we have discussed PT -symmetry in the general framework of quantum me-

chanics, a promising application of PT -symmetric systems appears in the framework of

optics, where a medium with alternating regions of gain and loss can be synthesized, pro-

vided that the (complex) refractive index profile satisfies the condition n∗(x) = n(x) [11,

22]. Experimental realizations of such systems have been reported in Refs. [13, 25] where
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Figure 2.3: Numerical stimulation of of light beam propagation the active “PT -

symmetric system”, where the spontaneous PT -symmetry breaking is γPT = 1. In

figures a-c, the left/right panels correspond to an initial excitation at the left/right

channel. The left (red) channel corresponds to the gain channel while the right (green)

channel corresponds to the loss channel. (a) A total passive system corresponding to

γ = 0. This propagation is reciprocal and the total intensity, I, remained constant

throughout the propagation. (b) γ < γPT corresponding to the exact PT -phase. In

this case, we observed a non-reciprocality. (c) γ > γPT corresponding to the broken

PT -phase. The total intensity, I, is plotted with the logarithmic scale. Figure taken

from [12].

a realization of the simple PT dimer, described by Eq. (2.1), was created and the beam

dynamics was investigated. This kind of synthetic PT material was shown to exhibit

all of the unique characteristics such as power oscillations, loss induced optical trans-

parency, double refraction, and nonreciprocal dynamics, etc. that has been discussed

in the previous section. Such intriguing properties of PT -symmetric systems allow for

a precise tailoring of light flow, and hence, the creation of on-chip integrated optical

isolators [14], and of cloaking devices [26].

In this section, we will present an experimental realization of the two level system in the

optics framework and highlight its main characteristics. Next, we will discuss a theoret-

ical study that interplays the nonreciprocal dynamics arising from PT symmetry [13]

with self-trapping phenomena associated with Kerr nonlinearities [27, 28]. We will show

how this system serves as a mechanism for unidirectional optical transport because it

can mold the flow of light in a surprising way.
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2.2.1 Observations of PT -dynamics in Photorefractive structures

Exotic properties such as intensity/power oscillations and non-reciprocal light propa-

gation has been recently observed in PT -symmetric system by C. E. Rüter et.al. [13].

Figure 2.4: Experimental set-up. An Ar+ laser beam is coupled into the arms of the

structure fabricated on a photorefractive LiNbO3 substrate. Waveguide 1 experience

gain and the amplitude mask blocks the pump beam from entering into waveguide 2

which experience loss. The CCD camera at the end monitors the intensity and phases

at the output. Figure taken from [13] and referenced herein.

The system studied consisted of two coupled PT -symmetric waveguides fabricated from

iron-doped LiNbO3 as shown in Fig. 2.4. The Hamiltonian of this system corresponds

to Eq. (2.1) where now, v0 corresponds to the real part of the refractive index and κ is

the evanescent coupling between the two waveguides. Each of the waveguides supports

one propagating mode. One of these waveguides is being optically pumped to provide

gain, γG, for the guided light, while the neighboring waveguide experiences an equal

amount of loss, γL.

The beam dynamics results for this experiment is identical to the theoretical predictions

discussed in section 2.1.2. These experimentally observed propagations are shown in

Fig. 2.5.



Section 2.2. Applications of PT -Symmetry 12

Figure 2.5: Experimental results of light beam propagation the active “PT -symmetric

system”. In the above figures, the left/right panels correspond to an initial excitation at

the left/right channel. The left channel corresponds to the gain channel while the right

channel corresponds to the loss channel. (a.) A conventional system corresponding to

γ = 0. This propagation is reciprocal. (b.) γ < γPT corresponding to the exact PT -

phase. In this case, we observed a non-reciprocality. (c.) γ > γPT corresponding to the

broken PT -phase. Figure taken from [13].

2.2.2 Unidirectional nonlinear PT -symmetric optical structures

A particular interest in transport phenomena is to realize novel classes of integrated

photonic devices that permit one-directional flow of information, e.g., optical isolators.

Although the linear dimer (discussed in the previous section) exhibits non-reciprocal

beam dynamics, the beam does not propagate in an unidirectional manner. Currently,

unidirectional elements rely mainly on the Faraday effect, where external magnetic fields

are used to break the space-time symmetry [14, 29]. In general, this requires materials

with a big Verdet constant (i.e. an optical “constant ”that describes the strength of the

Faraday effect for a particular material). However, this value of the Verdet constant is

typically incompatible with light-emitting wafers. Therefore, Ref. [14] states, “the the

creation of optical diodes and isolators have been suggested. Some proposed models

include the creation of optical diodes based on asymmetric nonlinear absorption [30],

second harmonic generation in asymmetric waveguides [31, 32], nonlinear photonic crys-

tals [33], and photonic quasicrystals and molecules [34, 35]”.

In order to device a scheme that can fully suppresses the flow of light in one waveguide
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while enhancing light propagation in the other, the authors of Ref. [14] introduced

nonlinearity to the dimer discussed in the previous section. With nonlinearity, the

beam propagates according to

i
da(z)
dz

+ iγa(z) + b(z) + χ|a(z)|2a(z) = 0

i
db(z)
dz
− iγb(z) + a(z) + χ|b(z)|2b(z) = 0 (2.11)

where χ is the strength of the Kerr nonlinearity and the coupling κ = 1.

Figure 2.6: Beam propagation in two coupled nonlinear waveguides with nonlinearity

strength χ and a complex PT -symmetric refractive index profile. Waveguides are color

coded, indicating balanced gain (red, left) and loss (green, right) regions (γ = 0.1).

Left columns correspond to an initial excitation at the gain waveguide port, while right

columns correspond to an initial excitation at the lossy waveguide. (a),(b) The nonlin-

earity χ = 1.9 is below the critical value χd ≈ 3.37 while for (c) and (d) the nonlinearity

strength χ = 8 is above. Figure taken from [14] and referenced herein.

Examples of the resulting dynamics of this system is shown in Fig. 2.6, in which

Fig. 2.6(a) and (b) corresponds to γ = 0.1 with nonlinearity strength χ = 1.9 and

(c) and (d) correspond to χ = 8 with the same γ. Once again, it is clear from the figure

that the introduction of gain/loss makes the dynamics nonreciprocal. However, by ma-

nipulating the strength of the nonlinearity, unidirectional propagation of the beam can
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be obtained (as shown in Fig. 2.6c and d). This mean that the outgoing beam always

leaves the sample from the gain waveguide irrespective of the waveguide from which the

initial beam enters. Moreover, the beam intensity at the lossy waveguide approaches

zero after a certain propagation distance along the waveguide. This novel unidirectional

propagation of the PT -symmetric nonlinear dimer is the key component in achieving

optical diodes.

2.3 Summary

We have introduced the basic concepts of PT -symmetry and presented some experi-

mental (and technological) realizations of a new class of systems that although not P

or T symmetric, they respect the combined PT - symmetry. This chapter concluded

with a theoretical work that combined PT -symmetry with nonlinearity in order to

make possible the realization of novel classes of integrated photonic diodes that allow

an unidirectional beam transport.

Inspired by the novel unidirectional behavior that PT symmetry introduced in the field

of optics, we wish to apply the same concept to thermal systems; where one of the

technological challenges is to control heat transport.



Chapter 3

Basic Models and Theory of Heat

Transport

Transport phenomena are central to many problems in physics, chemistry, and biol-

ogy [36–39]. From the previous chapter, it is clear that transport properties are also

of great technological interest because of their applications in a variety of transport-

based devices such as optical isolators, rectifiers, pumps, particle separators, molecular

switches, and electronic diodes and transistors. These applications can also be discussed

in the framework of thermal transport as well.

In the thermal framework, energy transport in a solid is usually defined by the thermal

conductivity, κ, defined via the Fourier’s law

JQ = −κ5 T, (3.1)

where the heat flux JQ is the amount of heat transported through the unit surface

per unit time and T (x, t) is the local temperature. The definition of these quantities,

JQ(x, t) and T (x, t) relies on the local equilibrium hypothesis, i.e. the possibility to

define a local temperature for a macroscopically small but microscopically large volume

at each position x and time, t. Thus, beyond calculating the transport coefficient, a more

15
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fundamental goal is to find the conditions in which local equilibrium can be realized and

to ensure that a unique non-equilibrium stationary state can be attained on a physically

accessible time scale. As Ref. [1] claims, “In this respect, simple mathematical models

are an invaluable theoretical playground to provide a more firm foundation to heat

conductivity and to understand more deeply the hypotheses underlying Eq. (3.1).”

This chapter aims to equip one with the basic tools necessary for understanding heat

transport in thermal systems. In section 3.1.1, we will introduce the basic models

used to study heat transport. Next, we will provide some basic definitions needed to

describe heat transport, such as temperature, in section 3.1.2 and flux in section 3.1.3.

Furthermore, we will discuss two heat-bath schemes that have been implemented in

various studies. Namely, we will discuss a deterministic bath in section 3.2 and a

stochastic bath in section 3.3. Finally, we will conclude in section 3.4.

3.1 Definitions

First, we will present some basic models and definitions of various observables that allow

us to describe and study heat transport. This section follows closely the discussion

provided in Ref. [1].

3.1.1 Models

For the simplicity of discussion, the models that we consider are one-dimensional. The

generalization to two dimensions is straightforward and can be found in Ref. [1].

A schematic setup of the systems that will be discussed is illustrated in Fig. 4.1, where

a chain of N coupled atoms is shown with the first and the last atoms interacting with a

thermal bath. Let ml and xl be the mass and the position of the lth particle, respectively.

For simplicity, only nearest- neighbor interactions will be considered. The first model
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Figure 3.1: A schematic drawing of a chain of N = 8 coupled oscillators coupled with

two thermal reservoirs at different temperatures.

that we will discuss has a Hamiltonian:

H =
N∑
l=1

[
p2
l

2m1
+ V (xl+1 − xl)

]
. (3.2)

where pl = mlẋl is the momentum. This Hamiltonian can have boundary conditions

that are either periodic, fixed, or free. Depending on the boundary conditions, one can

then define x0 and xN+1. The total momentum of such system is conserved because

only internal forces (i.e. forces that depend on relative positions) are present. In this

case, a zero eigenvalue solution exists and the corresponding eigenfunction is known as

the Goldstone mode. In the harmonic limit, the dispersion relation for the Hamiltonian

in Eq. (3.2) admits an acoustic branch whose group velocity corresponds to the velocity

of sound in the low wavenumber limit. Therefore, models of this type are often known

as acoustic models.

There are two important examples for the potential that are worth mentioning. One of

them is the well known Lennard-Jones potential:

V (z) = ε[(
a

z
)12 − 2(

a

z
)6] (3.3)

where a is the equilibrium distance and ε is the well depth. The other example is the
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Fermi-Pasta- Ulam (FPU) potential

V (z) =
g2

2
(z − a)2 +

g3

3
(z − a)3 +

g4

4
(z − a)4. (3.4)

This potential results from expanding a generic (well behaved) potential, V , close to its

equilibrium position z = a. There are special cases of this potential that are often used

in literature. One of these cases is when g4 = 0 and is known as the FPU-α model. In

this model, small coupling constant g3 and/or energies must be taken into account in

order to avoid runaway instability of trajectories. The case where g3 = 0 is known as

the FPU-β model.

Although the Hamiltonian in Eq. (3.2) is simple, it does not model real crystals very well

because it neglects the fact that real crystals are usually coupled to the environment.

For example, artificial arrays of atoms are constructed by growing them on a substrate

which exerts a pinning force on the atoms in such a way that stabilizes the lattice. Thus,

a simple way to take this coupling into consideration is to include an external, on-site

potential in the Hamiltonian

H =
N∑
l=1

[
p2
l

2m1
+ U(xl) + V (xl+1 − xl)

]
. (3.5)

Due to this external potential,U(xl), the total momentum is no longer conserved. There-

fore, the branches of the dispersion relation have a gap at zero wavenumber. Models

similar to (3.5) are known as optical models.

Before we proceed to discuss the basic definitions of temperature and flux, it is important

to point out the units that we will employ. In the following sections, dimensionless

variables will be used whenever possible. Therefore, the choice of the most natural

units will depend on the specific model. For example, when considering the FPU model,

it makes the most sense to set the equilibrium position a, mass m, and the angular

frequency ω0 =
√
g2/m to one. This implies that the sound velocity, aω0 is also one

and thus, the energy is measured in units of mω2
0a

2.
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3.1.2 Temperature

In order to interpret the molecular-dynamics simulations in the thermodynamical per-

spective, we first need to be able to define temperature in terms of dynamical variables.

A rigorous definition of the temperature, which one can derive from the entropy, S, of

system, is provided in Appendix C. The same definition can be obtained based on the

virial theorem:

T = 〈u · 5H〉µ (3.6)

where u is any vector that satisfies the condition5·u = 1, where 〈·〉µ refers to the micro-

canonical ensemble average. All of the units are chosen so that the Boltzmann constant

is kB = 1. Micro-canonical averages are used for the numerical investigation of isolated

systems. Once heat baths are introduced into the system, canonical averages should be

used instead. Fortunately, these two averages are the same in the thermodynamic limit.

Furthermore, it is well known that the ensemble and time averages are equivalent in

ergodic systems; thereby, allowing one to conveniently compute the averages by following

a single trajectory over time.

According to Eq. (3.6), there are many different, but physically equivalent, definitions

of the temperature. For example, the choice u = (0, . . . , 0, p1/N, . . . , pN/N) gives the

definition of temperature adopted in the canonical ensemble:

T =

〈∑N
i=1 p

2
i

Nm

〉
µ

. (3.7)

Another option is to choose u = (0, . . . , 0, pi, 0, . . . , 0), which yields a local definition of

temperature,

T =
〈
p2
i

m

〉
µ

(3.8)

3.1.3 Flux

This section aims to provide a meaningful definition of the heat flux. The heat flux

j(x, t) at time t in the spatial position x is the energy current, defined by the following
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continuity equation
dh(x, t)
dt

+
∂j(x, t)
∂x

= 0, (3.9)

where h(x, t) is the energy density. It must be pointed out that the energy flux defined

above does not, in general, coincide with the heat flux because the former arises also

from macroscopic motion [40]. Nonetheless, in solids and one-dimensional fluids, the

two fluxes coincide and therefore both names are used interchangeably.

For an ensemble of interacting particles, we can write the microscopic energy density

as the sum of the individual contributions located at the instantaneous position of each

particle

h(x, t) =
∑
n

hnδ(x− xn), (3.10)

where δ(x) is the Dirac distribution and

hn =
p2
n

2mn
+ U(xn) +

1
2

[V (xn+1 − xn) + V (xn − xn−1)] (3.11)

is the energy contribution of the nth particle. The first term on the right hand side

corresponds to the kinetic energy and the second term corresponds to the potential

energy associated with the (possible) interaction with an external field. The last term

is the potential energy that comes from the nearest neighbor interactions. Similarly, we

can write the heat flux as the sum of individual contributions

j(x, t) =
∑
n

jnδ(x− xn). (3.12)

But what is the definition of this local heat flux, jn? We can find it by considering the

energy flux in the limit of small oscillations around the equilibrium position. In this

limit, the density fluctuation can be neglected and hn is equal to the energy density

times the lattice spacing, a. The time derivative of hn can then be written as

dhn
dt

= mnẋnẍn+ẋnU ′(xn)− 1
2

[(ẋn+1 − ẋn)F (xn+1 − xn) + (ẋn − ẋn−1)F (xn − xn−1)] ,

(3.13)
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where the prime denotes the derivative with respect to the argument and F (x) = −V ′(x)

is the internal force. This expression can be further simplified by noting that the

equation of motion for the optical model (Eq.(3.5)) can be written as

mnẍn = −U ′(xn)− F (xn+1 − xn) + F (xn − xn−1). (3.14)

Substituting this expression into Eq. (3.13), one obtains

dhn
dt

= −1
2

[(ẋn+1 + ẋn)F (xn+1 − xn)− (ẋn + ẋn−1)F (xn − xn−1)] . (3.15)

Recalling continuity equation (Eq. (3.9)), we have

dhn
dt

+
jn − jn−1

a
= 0 (3.16)

where

jn = aφn :=
1
2
a(ẋn+1 + ẋn)F (xn+1 − xn) (3.17)

is the definition of the local heat flux. The lattice spacing, a ' xn+1 − xn results from

applying the chain rule to Eq. (3.15). Even if density fluctuations cannot be neglected,

it has been shown in Ref. [1] that one still arrived at the above definition of the local

heat flux.

3.2 Deterministic Bath

In order to discuss heat transport in any system, one needs to introduce a model of

two heat baths coupled to a small system of interest. At equilibrium, this is usu-

ally accomplished by well known methods such as canonical molecular dynamics and

Monte Carlo simulations [41]. However, out of equilibrium, one would need to consider

non-equilibrium states of infinite systems. In the attempt to provide a self-consistent

description of out-of-equilibrium processes, many types of deterministic baths have been

introduced; one of the most successful schemes is the Nosé-Hoover thermostat [42]. The

derivation of this thermostat starts from the extended system method and is discussed
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in detail in Appendix D. As derived in Appendix D, the evolution of the particles in

thermal contact with the bath α is governed by the set of equations

mq̈n = F (qn − qn−1)− F (qn+1 − qn)−

 ξ+q̇n if n ∈ S+,

ξ−q̇n if n ∈ S−,
(3.18)

where ξ± are two auxiliary variables modeling the microscopic action of the thermostat,

and S± refer to the two sets of N± particles (at the beginning and the end of the chain,

respectively) in contact with the baths.

The dynamics of ξ± is governed by the equation

ξ̇± =
1

Θ2
±

 1
kBT±N±

∑
n∈S±

mq̇2
n − 1

 ; (3.19)

where Θ± are the thermostat response times. The behavior of this thermostat can be

understood in the following way. Whenever the temperature (i.e. the kinetic term)

of the particles in S± is larger than T±, ξ± increases and eventually becomes posi-

tive. Therefore, ξ± acts as a dissipation in Eq. (3.19). The opposite occurs when the

temperature is below T± and this represents a stabilizing feedback around the given

temperature.

Moreover, this scheme (as shown in Appendix D) reproduces the canonical equilib-

rium distribution. Deterministic thermostats such as this one possesses a Hamiltonian

structure in an enlarged phase-space. An interesting property that is preserved by the

projection onto the usual phase space is time-reversibility. It can be shown that the

equations are invariant under time reversal

q̇n → −q̇n n = 1, . . . , N, ξ± → −ξ±. (3.20)

This property is the main reason that deterministic baths are successful; dissipation in

such baths is not included a priori, but it follows self-consistently from the dynamical

evolution. In particular, at equilibrium, 〈ξ±〉 = 0 indicates that the action of the bath

does not break microscopic reversibility. Out of equilibrium, 〈ξ+〉 + 〈ξ−〉 > 0 is due to

entropy production.
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3.3 Stochastic Bath

Another bath that is traditionally used is the stochastic bath. This bath introduced

simultaneously random forces and dissipation according to the fluctuation-dissipation

theorem.

We will arrive at the equations of motion for the chain of N particles by first considering

the motion of a particle immersed in fluid and is subjected to Brownian motion (his-

torically, the observation that small pollen grains are in a very animated and irregular

state of motion when suspended in water). The equation of motion of a single particle

system can described by the following Newton’s equation:

mẍ = −ηẋ+ ξ(t) (3.21)

where ẋ and ẍ corresponds to the particle’s velocity and acceleration, respectively. η is

proportional to the viscosity of the fluid. The force acting on the particle mass m at

time t is a sum of a frictional force proportional to the particle’s velocity, and a noise

term, ξ(t), which represents the effect of the collisions of the particle with surrounding

molecules in the fluid. Since ξ(t) corresponds to white noise, it has a mean of

〈ξ(t)〉ξ = 0 (3.22)

and an autocorrelation of

〈ξ(t+ τ)ξ(t)〉ξ = σ2δ(τ). (3.23)

where σ2 is the variance of the Gaussian probability distribution and has a value of

σ2 = 2λkBT . One attempt to solve Eq. (3.21) is to write it in the following Langevin

form

ẋ = v

v̇ = −λv + f(t) (3.24)



Section 3.3. Stochastic Bath 24

where λ = η/m and f(t) = ξ(t)/m. An explicit formal solution of this equation is given

by

v(t) = v0e
−λt +

∫ t

0
e−λ(t−s)f(s)ds (3.25)

To make some physical sense of this solution, it’s important to examine the first and

second moments of the velocity. The first moment of velocity is given by

〈v(t)〉ξ = v0e
−λt +

∫ t

0
e−λ(t−s)〈f(s)〉ξds (3.26)

Since 〈f(s)〉ξ = 0 according to Eq. (3.22), the first moment simplifies to

〈v(t)〉ξ = v0e
−λt (3.27)

In the long time limit, this quantity goes to zero. This matches our intuition that

〈v(t)〉ξ = 0, in which the overline corresponded to an average over the initial veloci-

ties.

In order to obtain the second moment, we introduced the correlation function

Cv(t2 − t1) = 〈(v(t2)− 〈v(t2)〉) · (v(t1)− 〈v(t1)〉)〉ξ (3.28)

After some algebra shown in Appendix E, the correlation function becomes

Cv =
σ2

2λ
{e−λ|t1−t2| − e−λ(t1+t2)}. (3.29)

Once we recall that Cv = 〈v2(t)〉 − 〈v(t)〉2, we can write the second moment as

〈v2(t)〉 = Cv(0) + 〈v(t)〉2. (3.30)

Substituting in the expression for the correlation function and the square of the moment

gives

〈v2(t)〉 =
σ2

2λ
+ e−2λt

(
v2

0 −
σ2

2λ

)
. (3.31)

According to the equipartition theorem, every square term in the Hamiltonian con-

tributes 1
2kBT to the energy, i.e. 1

2m〈v
2〉 = 1

2kBT . Thus, we are expecting the sec-

ond moment to scale as kBT . In thermal equilibrium, where there is no t-dependence,
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(
v2

0 − σ2

2λ

)
= 0. Therefore, by noting that σ2

2λ = kBT , we obtain the following fluctuation-

dissipation relation

λ =
σ2

2kBT
, (3.32)

which relates the strength, σ2, of the fluctuating force to the magnitude, λ, of the

dissipation.

Similarly, one can elevate this one particle system to a many particle system. In the

simple case of an equal-mass chain, the equation of motion is governed by the following

set of Langevin equations:

mq̈n = F (qn − qn−1)− F (qn+1 − qn) + (ξ+ − λ+q̇n)δn1 + (ξ− − λ−q̇n)δnN , (3.33)

where ξ±’s are again the noise term with zero mean and variances 2λ±kBT±. The plus

and minus sign corresponds to the different temperatures in the bath coupled to the

first and last site of the chain, respectively.

A way to implement the stochastic bath is to picture each reservoir as a one-dimensional

ideal gas of particles of mass M± interacting with the chain through elastic collisions.

First, a random set of initial positions and velocities is chosen for the atoms in the

chain. Next, the equations of motion are used to advance the time t, by an increment

δt. Numerically, this is done by implicit integration procedures such as the Runge-

Kutta. The increment δt is chosen to be small compared to the minimum vibration

period of the lattice. With some probability Λδt, each of the end atoms experience

a collision with an atom in its respective reservoir and impulsively gain a momentum

increment. This results in

q̇1 → q̇1 +
2M+

m+M+
(v − q̇1) (3.34)

for the left reservoir. Likewise, an analogous expression holds for the right reservoir.

The collision probability Λ is a preassigned constant, independent of the velocities.

The initial velocity, v, of the gas particle is a random variable chosen according to a
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Maxwellian distribution

P+(v) =

√
M+

2πkBT+
exp

(
−M+v

2

2kBT+

)
(3.35)

In the case where M± = m, the process is simply an exchange of velocities between

the particles. In the case that M± � m, the interaction with the reservoirs yields the

Langevin equation in Eq. (3.33) with λ± = 2M±/t, where t is the average collision

time.

This method is computationally simple because it does not deal with the stochastic

differential equations. Moreover, the dissipation is not included a priori in the model

but is self-consistently generated by the dynamics.

There are many other schemes for the heat baths that were not discussed in this thesis.

One may refer to Ref. [1] for more informations on these schemes.

3.4 Summary

We have introduced the basic models used to study heat transport in thermal systems

and provided the definitions of the necessary quantities such as local temperature and

flux. Furthermore, we discussed the most commonly used heat baths – the deterministic

baths and stochastic baths and showed how fluctuation and dissipation is incorporated

in both. In the following chapter, we will use these tools to study heat transport in a

novel system that we will propose.



Chapter 4

Transport in PT -Symmetric

Harmonic Chains

Up to now, all the theoretical studies of energy transport on the nano-scale level have

been conducted on passive (conservative) systems [1], that is, systems without any active

elements which would amplify or dissipate local energy from or to some external degrees

of freedom. However, dissipation mechanisms are inevitable in practical applications and

thus one of the key challenges encountered in thermal engineering is their presence, that

typically degrades the efficiency of thermal devices. As a result, considerable research

effort is invested in eliminating and mitigating these undesirable absorption mechanisms.

Below, we adopt the opposite viewpoint: we suggest to manipulate absorption, and via a

judicious design that involves the combination of amplification and absorption regions,

we achieve new schemes of thermal conduction with intriguing properties similar to

thermal rectification and heat switching. Our study is inspired by recent achievements

in the field of optics, where it has been discovered [11] that a new class of synthetic

materials (so-called PT meta-materials) created by delicately balanced amplification

and absorption regions can exhibit novel properties [11–14]. At the heart of these

innovative ideas is the observation that non-Hermitian Hamiltonians that respect the

27
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combined parity (P) and time (T ) reversal symmetry can have a real spectrum and

thus generate a (pseudo)-unitary time evolution [15, 16, 43–46].

In this chapter, we present a theoretical study of heat transport through an active har-

monic chain coupled at the left and right edges to a pair of Langevin heat reservoirs

with temperatures TL and TR, respectively. The main result of this study has been re-

cently submitted for publication [10]. First, the model and mathematical formalism will

be introduced in section 4.1. Next, we will present a simple two oscillator system that

is analytically solvable in section 4.1.3. Section 4.2 will investigate the the system that

we proposed, while an analytical understanding will be discussed in the section 4.2.2.

Finally, we conclude with a proposal for an electronic implementation in section 4.3 and

a summary in section 4.4.

4.1 Model and Mathematical Formalism

The mathematical model that we consider is schematically illustrated in Fig. 4.1. It

consists of a chain of N = Na + 2Nb particles of equal mass m coupled by harmonic

springs of constant k. The first (last) Nb particles are coupled to a Langevin reservoir

of temperatures TL (TR). We assume that the coupling constant κ with the reservoirs

is the same for all particles. We also have two active oscillators, an amplifier - where

the motion is linearly amplified - and an attenuator - where it is linearly damped -

placed symmetrically with respect to the middle of the chain, at positions nγ and n−γ

respectively. Choosing units in whichm = k = 1, the corresponding stochastic equations

of motion are

dqn
dt

= pn; n = 1, . . . N

dpn
dt

= qn+1 − 2qn + qn−1 +
∑
σ=±

σγδn,nσγpn +
∑
τ=L,R

(−κpn +
√

2κTτ )θτnξn. (4.1)

with open boundaries (q0 ≡ qN+1 ≡ 0), θLn = {1 if n ≤ Nb; 0 otherwise}, θRn = {1 if n >

Na + Nb; 0 otherwise}, and ξn(t) delta-correlated Gaussian stochastic variables with
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Figure 4.1: (a) Schematic illustration of an active harmonic chain model: Na = 8

harmonic masses are, coupled to two other large sub-lattices which are in turn coupled

to Langevin baths. Figure taken from Ref. [10] and referenced herein.

〈ξn(t)ξn′(t′)〉 = δn,n′δ(t− t′) where the bracket represents a noise average.

4.1.1 Mathematical Formalism for κ = 0

For κ = 0, the system ofN coupled oscillators is isolated from the reservoirs. In this case,

the Hamiltonian associated with Eqs. (4.1) is PT -symmetric [15, 43]. The normal modes

and eigenfrequencies can be calculated by performing the substitution qαn = An exp(λαt).

In accordance to the standard PT -scenario [15, 18, 19, 43] discussed in Chapter 2,

we find that the eigenfrequencies λα are imaginary for an amplification/attenuation

parameter γ smaller than a critical value γPT . In this regime the normal modes are

also eigenmodes of the PT operator. For γ > γPT the eigen-frequencies of the system

are complex while the normal modes are no longer eigenstates of the PT operator. The

eigenvalues for these two regimes are plotted in Fig. 4.2, where blue corresponds to

the real eigenfrequencies and red corresponds to the corresponding imaginary part. As

discussed in Chapter 2, γPT is the first point where two real eigenfrequencies coalesce

resulting in two complex ones.

However, once we introduce the coupling to the thermal reservoirs (i.e. κ 6= 0), a

different mathematical formalism is required in order to understand the behavior of the

added stochastic term.
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Figure 4.2: The real and imaginary part of the eigenfrequencies Vs. the amplifica-

tion/attenuation parameter,γ. The black lines denote the real eigenfrequencies (i.e.

imaginary λα) and the red lines denote the corresponding imaginary part (i.e. real part

of λα). The blue line marks where γPT is.

4.1.2 Mathematical Formalism for κ 6= 0

For κ 6= 0, we use Ito calculus of stochastic differential equations and derive (in Ap-

pendix F) the equation of motion for the covariances C(t) = 〈x̃(t) ⊗ x̃(t)〉, where the

vector ~x is defined as ~x = (q1, . . . , qN , p1, . . . , pN )T . We find

dC/dt = ZC + CZT + Y (4.2)

where Z, and Y are 2N × 2N matrices

Z =

 0 1

D 0

+
∑
σ=±

σγPN+nσ −
∑
τ=L,R

Yτ (4.3)

Y =
∑
τ

TτYτ , with Yτ = κ
N∑
n=1

θτnPN+n. (4.4)

Above, Pk = ~ek ⊗ ~ek are diagonal rank-1 projectors, ek is a basis vector with elements

(~ek)n = δn,k and D is an N ×N matrix with elements Dn,m = −2δn,m+δn,m+1 +δn,m−1
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which encodes all the physical information about the interactions within the harmonic

lattice.

For this system, we are interested in the non-equilibrium steady state (NESS), whose

covariance matrix C∞ satisfies the following Lyapunov equation

ZC∞ + C∞ZT = −Y (4.5)

The existence and the stability of the NESS are determined by the (complex) spectrum

{λα, α = 1, . . . , 2N} of the real non-symmetric matrix Z, 1 defining a bi-orthonormal

set of right ~vα and left ~v′α eigenvectors,

Z~vα = λα~vα, ZT~v′α = λα~v
′
α, ~vα · ~v′β = δα,β. (4.6)

In other words, NESS exists if all eigenvalues λα have negative real part, <λα < 0.

Otherwise, if for some, α, <λα > 0, the time-dependent covariances (4.2) - for a generic

initial condition - increase as exp(2t<λα) signaling an uncontrolled amplification of the

system. The transition to unstable behavior is determined by the parameter γ. We

define γi, as the point for which the first eigenvalue reaches the line <λ1(γ = γi) =

0.

Our formalism can be utilized to derive the properties of NESS. For example, the tem-

perature Tn = 〈p2
n〉, at each site corresponds to Cn+N,n+N and the energy current at

site n is a linear combination of the covariance matrix elements, i.e.

Jn =
〈pn(qn+1 − qn−1)〉

2
=

(Cn+1,n+N − Cn−1,n+N )
2

(4.7)

Furthermore, since the matrix Y on the RHS of Eq. (4.5) is linear in the two bath

temperatures Tτ , its solution - the full covariance matrix - and hence all the currents,

are also linear in Tτ , namely

C∞ = TLCL + TRCR (4.8)
1We order the eigenvalues w.r.t. non-increasing real part <λα ≥ <λβ for α < β. Moreover, since Z

is real, the corresponding eigenvalues come in complex conjugate pairs λ2k = λ∗2k−1.
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where Cτ solves the temperature independent Lyapunov equations ZCτ +CτZT = −Yτ .

If JL and JR designate the energy/heat currents in NESS to the left and right baths

respectively, i.e. JL = J∞n , for Nb < n < nσγ , and JR = J∞n for nσγ < n ≤ Na + Nb

(since J∞n is site independent for passive sites uncoupled from the baths due to energy

conservation) then we may write

Jτ = Kτ
LTL +Kτ

RTR (4.9)

where Kτ
τ ′ ≡ ∂Jτ/∂Tτ ′ are temperature independent coefficients obtained explicitly

combining (4.8) and (4.9).

Now that we developed the tools necessary to observe the temperature profile and flux

of the system, we will illustrate the implementation of this formalism via the simplest

system, which corresponds to N = 2.

4.1.3 Dimer example

The above mentioned theoretical analysis is best illustrated by a simple dimer (i.e.

N = 2). The model is shown schematically in Fig. 4.3.

The equation of motion for this system corresponds to

ṗα = qᾱ − 2qα + [(−1)αγ − κ]pα +
√

2κTαbathξα (4.10)

where α denotes sites 1 or 2 and ᾱ denotes the complementary site. This equation of

motion can be rewritten by defining the vector ~x as follow

~x =


q1

q2

p1

p2

 . (4.11)
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Figure 4.3: A schematic illustration of an active harmonic dimer model: N = 2 harmonic

masses are coupled to each other and to Langevin baths. +γ corresponds to the the

amplifier and −γ denotes the attenuator.

The equation of motion can then be express in the following matrix form

d−→x
dt

=


0 0 1 0

0 0 0 1

−β − a 1 γ − κ 0

1 −β − a 0 −γ − κ


︸ ︷︷ ︸

Z

−→x+


0 0 0 0

0 0 0 0

0 0
√

2κT 1
bath 0

0 0 0
√

2κT 2
bath


︸ ︷︷ ︸

D


0

0

ξ1

ξ2

 .

(4.12)

The stationary properties of this system (i.e. the eigenvalues and eigenvectors) can be

found via a direct diagonalization of the Z matrix, the latter being nothing else than

the Liouvillian matrix.

Spectra Analysis

For κ = 0, the standard scenario of PT -symmetry breaking is observed and illustrated

in Fig. 4.4.

Once κ is introduced, a single pair of eigenvalues λ1,2 starts from negatives and becomes
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Figure 4.4: The real and imaginary part of the eigenfrequencies Vs. the amplifica-

tion/attenuation parameter,γ for N = 2 and κ = 0. The black lines denote the real

eigenfrequencies (i.e. =λ) and the red line denote the corresponding imaginary part (i.e.

<λ).

positive at γ = γi, where above γi, we have instability in the system (as shown in

Fig. 4.5). It is important to note that introducing the coupling to the baths still allow

a region of stability with the width of this region controlled by the coupling strength κ.

The coupling of the system to the bath, κ, acts as a type of perturbation. It not only

lifts the degeneracies, but it also shifts the real part of the energies down to the negative

semi-plane, by a factor proportional to κ. Compared to the closed system, the open

system has a smaller region of stability. However, this region increases with increasing

κ (see Fig. 4.6). Since we treat κ as some sort of perturbation, only small values of κ’s

are considered. Physically, it also makes sense since large κ values correspond to a large

collision rate (where the dynamics of the system become dominated by the baths.)

Not only is the region of stability affected by κ, but the imbalance between the am-
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Figure 4.5: The real and imaginary part of the eigenfrequencies Vs. the amplifica-

tion/attenuation parameter,γ for N = 2, κ = .5. The black lines denote the real

eigenfrequencies (i.e. =λ) and the red lines denote the corresponding imaginary part

(i.e. <λ).

plification and attenuation also plays a role. Instead of having the amplification and

attenuation be of equal magnitude, we allow the amplification to stay the same (i.e.

+γ) while the attenuation becomes −γ(1−∆), where ∆ serves as an off-set from PT -

symmetry. As the system deviates from PT -symmetry, the region of stability decreases

(see Fig. 4.6). Since we are interested in a system that exhibits a large region of stability,

we will only consider systems in which the amplification and attenuation are places in

a PT -symmetric manner.

Analysis of the dynamical properties

As mentioned in the section 4.1.2, we can extract the steady state properties (such as

the temperature profile and flux) of our system from the covariance matrix C. The

steady state solution of Eq. (4.12) yields a covariance matrix C, whose temperatures on
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Figure 4.6: λ Vs. γ for N = 2. Each sub-figure corresponds to a different value of the

off-set ∆. ∆ = 0 corresponds to the PT -symmetric case and ∆ = 1 corresponds to the

case where there is amplification, but no attenuation.

sites 1 and 2 correspond to C33 and C44 matrix elements, respectively:

T1 = C33 =
TR + TL(1 + 4γκ+ 4κ2)

2− 4γ2 + 4κ2
; T2 = C44 =

TL + TR(1− 4γκ+ 4κ2)
2− 4γ2 + 4κ2

(4.13)

Here, TL and TR corresponds to the left and right temperature of the bath, respectively.

Note that the added amplifier and attenuator allow T1 and T2 to be non-reciprocal,

similar to the behavior in the dynamics of the optical dimer.

For the dimer, we can find the analytical expression for the γi by noting that it is the

point above which we no longer have a steady temperature profile. From Eq. (4.13),

this occurs when the denominator approaches zero (i.e. 2− 4γ2 + 4κ2 = 0). Therefore,

we obtain the following expression for γi

γi =

√
1
2

+ κ2. (4.14)
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The flux for this system cannot be defined using the standard definition of flux given in

Eq. (4.7). However, we can conjecture the flux going into the left and right bath to be

JL = C33 − TL and JR = C44 − TR, respectively.

To a zeroth order approximation, we obtain the following functional form for the left

and right flux:

JL =
1
δγ

(c1TL + c2TR) + (c3TR − c4TL) +O[δγ]1

JR =
1
δγ

(q1TL + q2TR) + (q3TL − q4TR) +O[δγ]1 (4.15)

where, δγ = γi− γ and c’s and q’s are some constants. The last term in both equations

is the first order approximation. This functional form tells us two different behaviors

of the fluxes. For γ << γi, The second term in the fluxes dominate. In this case, as

we increase TL (TR), while keeping the other bath TR (TL) at constant temperature, we

expect to see a decrease in the flux flowing into the left (right) bath. This case matches

our intuition that heat flows from high to low. However, once γ approaches γi, the first

term determines the flux behavior. In this case, these equation tell us that we’ll observe

an opposite behavior from the previous case. Namely, as we increase TL (TR), while

keeping the other bath TR (TL) at constant temperature, we expect to see an increase

in flux flowing into the left (right) bath (i.e. the hotter the bath temperature, the more

flux flows to it!). This counterintuitive prediction from the simple dimer motivated

us to study a slightly more extended system where we can numerically measure these

fluxes.

4.2 Beyond the Dimer

Although the simple dimer model offer us a preliminary insight on the effect of includ-

ing active elements into harmonic chains coupled to Langevin baths, it fail to provide

us a ground to measure and confirm our theoretical conjecture of the flux behaviors.

Therefore, we must elevate our model to the one depicted in Fig. 4.1. In this model, the
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two passive sites to the left, right, and in between the amplifier and attenuator allow us

to measure the fluxes defined in Eq. (4.7).

4.2.1 Spectra Analysis

Similar to the case of the dimer, we found that a PT -symmetric configuration results

in an increase of the stable γ-domain. In the main panel of Fig. 4.7a we show, the

parametric evolution of λα as a function of γ for the PT configuration of Fig. 4.1. We

note that most of the eigenvalues are located inside a band, and remain unchanged

as γ increases. Only a single pair of eigenvalues λ1,2 is approaching and crossing the

imaginary line at γ = γi. Such behavior is typical of PT -symmetric systems. In the

upper inset of Fig. 4.7a, we show the behavior of γi versus the coupling parameter κ

and various bath sizes Nb. In all cases, γi ≤ γPT , while for large κ’s the critical γi

reaches an asymptotic value. Finally in Fig. 4.7b we show for comparison, the spectrum

of a non-PT -symmetric structure, where γL = γ and γR = 0. Among the various non-

PT configurations that we have tested, it provides the most noticeably smaller value of

γi than the one found in Fig. 4.7a.

4.2.2 Analysis of dynamical properties

For γ = 0, clearly JL = −JR and KL
L > 0, KR

R < 0. However, for an active system a

critical γ∗τ , 0 < γ∗τ < γi, may exist for which one of the currents Jτ does not depend

on the corresponding temperature Tτ and thus the differential thermal conductance

vanishes Kτ
τ |γ=γ∗τ = 0. This is nicely illustrated by our numerical data in Fig. 4.8.

Moreover, as γ increases above γ∗τ , the differential thermal conductance Kτ
τ changes sign.

Specifically, we found that KL
L (γ < γ∗L) > 0 (KR

R (γ < γ∗R) < 0 while KL
L (γ > γ∗L) < 0

(KR
R (γ > γ∗R) > 0. Thus, in the interval γ∗L < γ < γ∗R both differential thermal

conductances KL
L ,K

R
R are negative. While for γ < γ∗τ the heat flow is consistent with

the standard expectations, the opposite limit of γ > γ∗τ is counter-intuitive. Specifically,



Section 4.2. Beyond the Dimer 39

Figure 4.7: (a) The real and the imaginary (lower inset) part of the spectrum λ of the

PT -symmetric harmonic chain of Fig. 4.1, vs. the amplification/attenuation parameter

γ. The green (red) curve corresponds to the leading eigenvalue, <λ1 (=λ1). The upper

inset shows the instability point γi vs. the bath coupling constant κ for various Nb-

values. (b)-(e) The same as in (a), but now for only the pair of eigenfrequencies that

contributed toward the instability of the system are shown for different values of κ for

different values of the imbalance, ∆.
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Figure 4.8: (a) Heat flux JL as a function of the parameter γ for various TL temperatures

and fixed TR = 10; (b) Heat flux JR for various TR temperatures and fixed TL = 10.

In the inset we show a magnification of the area around γ∗R. The dashed blue lines

correspond to heat fluxes for the case where TL = TR. A non-reciprocal behavior is

obvious.

we find that JL < 0 indicating flux towards the left bath, even if its temperature is higher

than that of the right bath i.e. TL > TR (see Fig. 4.8a). In fact, the higher is TL, the

larger is the magnitude of the heat flux |JL| towards the left bath. A similar anomalous

heat transport is observed for the right flux JR, i.e. the flux measured closer to the

attenuating oscillator n−. This is illustrated in Fig. 4.8b where it is shown that higher

TR(> TL) values, lead to larger heat fluxes JR.

Our numerical experiments (see for example Fig. 4.8), indicate that γ∗τ may often lie very

close to γi. We can use a further analytical approximation to get a general estimation

of γ∗τ together with the scaling behavior of the currents in terms of the small-parameter

δγ = γi − γ. We first note that the solution of the Lyapunov equation can be formally

written in terms of a linear problem for the super-operator Ŝ acting on the matrix
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space of 2N × 2N matrices X, as ŜX = ZX + XZT . Specifically ŜC∞ = −Y or

C = −Ŝ−1Y = −
∑

τ Tτ Ŝ−1Yτ . Next, we define the two sets of matrices Vα,β =

~vα ⊗ ~vβ, and V′α,β = ~v′α ⊗ ~v′β, which are bi-orthonormal with respect to a matrix dot-

product (A,B) = trATB, i.e. (Vα′,β′ , /Vα,β) = δα,α′δβ,β′ . The latter identity can

be easily derived with the help of Eq. (4.6). Using the above relations we find the

spectral decomposition for the super-operator Ŝ which reads as ŜVα,β = (λα+λβ)Vα,β.

This relation, together with the bi-orthonormality, allows us to derive a Liouvillean

decomposition of the covariances

Cτ = −
∑
α,β

~v′α ·Yτ~v′β
λα + λβ

Vα,β. (4.16)

Eq. (4.16) is a very useful approximation in the vicinity of γi, (i.e. for small δγ) since

then, in our case (See Fig.2), only a single pair of eigenvalues λ1,2 dominates. Writing

λ1,2 ≈ −ρ δγ ± iΩ where ρ = −∂<λ1,2/∂γ|γi, we have

Cτ = (ρ δγ)−1(~v′1 ·Yτ~v′2)(V1,2 + V2,1)/2 +O((δγ)0) (4.17)

Eq. (4.17) together with Eq. (4.7) yields an approximate expression of the current Jn

near γi

Jτ = (1/δγ)(KτLTL +KτRTR) +O((δγ)0) (4.18)

where Kττ ′ are γ and temperature independent coefficients. The divergence Jτ ∼ 1/δγ

is nicely seen in Fig. 4.8.

To strengthen further the validity of our approximations for the covariant matrix Eq.

(4.17) we have calculated the temperature profile Tn ≡ 〈p2
n〉 = CN+n,N+n and the

current profile defined by Eq. (4.7). In Fig. 4.9 we compare the outcome of Eq. (4.5)

with the predictions of Eq. (4.17) and find an excellent agreement as δγ → 0.
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Figure 4.9: Flux and temperature profiles for two different situations of a chain with

Na = 8 and Nb = 50 sites. The bath temperatures are TL = 10, TR = 1 while the

coupling to the bath is κ = 0.1: left plots correspond to γ = 0.1, far away from the

critical value γi = 0.289, while the right plots are for γ = 0.286 much closer to γi.

The black curves correspond to exact solution of Eq. (4.5), while the red curves are

associated with the analytical approximation Eq. (4.17).

4.3 Electronic Implementation

Theoretical work needs to be experimentally tested and thus, we propose an LRC

circuit capable of demonstrating the qualitative features of the active harmonic lat-

tice [10]. The proposed experiment is shown in Fig. 4.10. The heat baths are im-

plemented by synthesized noise sources Vn and V ′n having spectral density functions

S(ω) = 2
πkBTr

√
1− ω2LC/4, with a fixed series resistance r =

√
L/C, and T the re-

spective bath temperature. This spectral density along with the L/2 coupling into the

ends of the system closely matches the Langevin reservoir of our lattice model. More-

over, the linear nature of the system allows for a computational correction of both the

spectral function and impedance of the experimental bath to the infinite chain equiv-

alent. The gain is implemented by a negative impedance converter [47] configured as

a negative resistance. The lattice chain has an exact electronic equivalence to an LC

chain with the gain (loss) taken as a series negative resistance (resistance). The in-



Section 4.4. Summary 43

Figure 4.10: Electronic implementation of a simplified Na = 2 (dimer) chain. The

negative resistance gain element is provided by the op-amp negative impedance converter

shown in left. The voltage sources Vn and V ′n are synthesized noise generators which,

along with the fixed r stand in for the thermal baths.

herent instability of a negative resistance discrete element LR combination precludes,

however, this direct implementation. The gain and loss in the electronic dimer version

are introduced as a parallel resistance elements. The net power conducted out of either

bath can be obtained from the voltages sampled on the respective source resistance.

For example, if V (t) is the voltage on the upper end of the left bath resistance r (see

Fig 4.10), the power conducted out of that bath is Wn = 〈V (t)(Vn(t) − V (t))〉/r. A

negative power would indicate heat flux into the bath.

4.4 Summary

We have demonstrated that heat transport in PT -symmetric harmonic chains can ex-

hibit unique characteristics. The non-equilibrium steady state solution was found and

studied in detail. We have found that the heat flux has negative differential thermal

conductance, it is independent of the temperature of the bath that is on the other end

of the chain, and shows a non-reciprocal behavior with respect to the two baths. Lastly,

an electronic implementation where our theory can be test was proposed.



Chapter 5

Conclusion

The importance of symmetries in transport phenomena has been studied and recog-

nized in a variety of frameworks ranging from electronics, to optics, molecular physics,

bio-physics and energy transport in biological systems. Examples of such fundamen-

tal symmetries that we often find in nature are parity and time-reversal symmetries.

Recently, there has been considerable research interest in systems that do not obey

the parity and time-reversal symmetries separately, but respect the combined parity

and time-reversal symmetry. These systems exhibit real spectra despite the fact that

they are in general non-Hermitian due to the presence of various gain/loss mechanisms.

The ability to realize such types of systems in the optics framework generates further

theoretical interest in understanding their properties. Among the theoretical predic-

tions are power oscillations, loss induced optical transparency, double refraction, and

nonreciprocal beam dynamics.

In this thesis, we investigated to what extent such novel features are present in the

framework of heat transport by using a simple PT -symmetric harmonic model coupled

to Langevin heat reservoirs. We study the non-equilibrium steady-state properties of

this system, such as the temperature profile and flux, by employing the Liouvillian ap-

proach and Ito calculus of stochastic differential equations. Our main result reveals a
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heat flux that can have a negative differential thermal conductance and can be inde-

pendent of the temperature of the reservoir on the other end of the chain. Moreover,

the heat flux shows a nonreciprocal behavior with respect to the two baths. Finally, we

propose an electronic experimental set-up where our predictions can be tested.

Obviously, our current study only scratches the surface of PT -thermal transport. Many

questions still remain to be answered. For example, it is not obvious how the interplay

of nonlinearity with PT -symmetry will affect the heat flow. Equally exciting is the

investigation of the scaling behavior of the thermal conductance with the system size.

The main question here is to what extent the Fourier law will affected by the non-

reciprocal heat flow in PT -symmetric systems. The answers to these questions will not

only enhance our fundamental understanding of PT -symmetry, but it might also lead

to new proposals for the creation of novel thermal devices and the design of efficient

schemes for the control of heat transport.



Appendix A

Eigenvalues in the Broken PT

Phase

A PT -symmetric Hamiltonian has to satisfy the following commutation relation:

[PT , H] = 0 (A.1)

Let us define the eigenvectors and eigenvalues of H as H|ψ〉 = E|ψ〉. Then, the com-

mutation relation implies

HPT |ψ〉 = PT H|ψ〉

HPT |ψ〉 = PT E|ψ〉 (A.2)

Since, PT is an anti-linear operator, we get:

HPT |ψ〉 = E∗PT |ψ〉 (A.3)

This tells us that |ψ〉 and PT |ψ〉 are both eigenvectors of the Hamiltonian H. Also,

both E and E∗ are eigenvalues of H. In the exact PT -symmetric phase where H and

PT share the same set of eigenvectors, the eigenvalues have to be strictly real because

46
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E = E∗. In the broken PT -symmetric case where PT and H no longer share the same

eigenvectors, the eigenvalues of H comes in complex conjugate pairs.



Appendix B

Left and Right Eigenvectors

Recall that for the PT -symmetric Hamiltonian, we have the following left and right

eigenvectors:

〈Ln|H = 〈Ln|En; H|Rn〉 = En|Rn〉 (B.1)

Let us focus on the left eigenvectors first and take its transpose:

(〈Ln|H)T = (〈Ln|En)T

HT |Ln〉 = En|Ln〉 (B.2)

For a PT -symmetric Hamiltonian, H = HT , therefore, we get

H|Ln〉 = En|Ln〉 (B.3)

Since this has to be equivalent to the right eigenvectors, we can conclude that the left

(right) eigenvectors is the transpose of the corresponding right (left) eigenvectors

(〈Ln|)T = |Rn〉. (B.4)

48



Appendix C

A Rigorous Definition of

Temperature

A rigorous definition of temperature starts with the entropy S. In the micro-canonical

ensemble, entropy plays the role of a generalized thermodynamic potential which deter-

mines other thermodynamic observables.

Specifically, temperature can be defined from the well known thermodynamic rela-

tion:
1
T

=
(
∂S

∂E

)
V

(C.1)

where V indicates taking the partial derivative keeping the volume fixed. So what is

49
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the entropy for the micro-canonical ensemble? There are two choices [48]:

(A) S(E,N, V ) = ln(cNω(E,N, V )) = ln
(
cN

∫
dqdpδ(E −H(q, p))

)
= ln

(
cN

∫
H=E

dσ

‖ 5H‖

)
(B) S(E,N, V ) = ln(c′NΩ(E,N, V )) = ln

(
c′N

∫
dqdpΘ(E −H(q, p))

)
= ln

(
c′N

∫
H≤E

dΓ
)

(C.2)

In both of these choices, the Boltzmann constant, kB = 1, and cN and c′N are arbitrary

constants that makes the argument in the logarithm dimensionless. q and p are the

generalized position and momentum coordinates.

Definition (A) includes all of the microstates compatible with the constant H = E, i.e.,

those microstates belonging to the constant energy surface ΣE = (q, p) ∈ Γ|H(q, p) = E.

One the other hand, (B) considers those microstates contained inside the hypervolume

VE = (q, p) ∈ Γ|H(q, p) ≤ E limited by ΣE . Both definitions become equivalent in the

thermodynamic limit. In the following discussion, we will use (A) to arrive at our

definition of temperature:

1
Tµ

=
∂S

∂E
=

∂ω
∂E

ω
(C.3)

Making use of a theorem of differential geometry and choosing a vector u such that

5 · u = 1, one obtains:

1
Tµ

=

∫
H=E dσ/‖ 5H‖∫
H<E5 · udΓ

=

∫
H=E dσ/‖ 5H‖∫

H=E5H · udσ/‖ 5H‖
(C.4)

This approach yields the same result as in Eq. (3.6).



Appendix D

Nosè-Hoover Thermostat

This appendix applies the extended system method via a virtual variable formula-

tion to obtain the equilibrium distribution function. This derivation is taken from

Ref. [42].

In the extended system (ES) method, an additional degree of freedom s is introduced

and acts as an external system on the physical system of N particles, with coordinates

q′i, masses mi and potential energy φ(q′). Virtual variables (coordinate qi, momentum

pi, and time t) were also introduced and they relate to the real variables (q′i,p
′
i, t
′)

by

q′i = qi,

p′i = pi/s,

t′ =
∫ t dt

s
(D.1)

The real velocity (dq′i/dt
′
i) is also expressed by a scaled form in the virtual variable

formulation
dq′i
dt′

= s
dq′i
dt

= s
dqi
dt

(D.2)
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Therefore, one can interpret these transformation by a time scaling dt′ = dt/s.

The Hamiltonian of the extended system of the particles and the variable s in terms of

the virtual variables is postulated as

H =
∑
i

p2
i /2mis

2 + φ(q) + p2
s/2Q+ gkBT ln s, (D.3)

where ps is the conjugate momentum of s, Q is a parameter of dimension energy·(time)2

and behaves as a mass for the emotion of s, kB is the Boltzmann’s constant, T is the

externally set temperature, the parameter g is essentially equal to the number of degrees

of freedom of the physical system.

Next, Nosé assumes that the Hamiltonian formalism can be applied to Eq. D.3 with the

virtual variables. The equations of motion are

dqi
dt

=
∂H

∂pi
=

pi
mis2

,

dpi
dt

= −∂H
∂qi

= − ∂φ
∂qi

,

ds

dt
=
∂H

∂ps
= ps/Q,

dps
dt

= −∂H
∂s

=

(∑
i

p2
i /mis

2 − gkBT

)
/s. (D.4)

In Lagrangian form, these are

d

dt

(
mis

2dqi
dt

)
= − ∂φ

∂qi
(D.5)

or
d2qi
dt2

= − 1
mis2

∂φ

∂qi
− 2
s

ds

dt

dqi
dt

(D.6)

and
d

dt

(
Q
ds

dt

)
=

[∑
i

s2

(
dqi
dt

)2

/mi − gkBT

]
/s. (D.7)

The conserved quantities are the Hamiltonian H, the total momentum
∑

i pi, and the

angular momentum sumiqi × pi.

dH

dt
=
∑
i

(
∂H

∂pi

dpi
dt

+
∂H

∂qi

dqi
dt

)
+
∂H

∂ps

dps
dt

+
∂H

∂s

ds

dt
= 0. (D.8)
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The conservation laws for the last two quantities are derived from Eq. (D.4) and the

properties satisfied by the potential

∑
i

∂φ

∂qi
= 0 (D.9)

and ∑
i

qi ×
∂φ

∂qi
= 0. (D.10)

It should be noted that during the ordinary type of simulations with periodic boundary

condition, the angular momentum is not conserved.

In this case where the momentum and angular momentum is conserved, we can write

down the partition function Z for N identical particles by integrating the equilibrium

distribution function ρ(x1, x2, . . .) over the whole phase space.

Z =
1

N !h3N

∫
dx1

∫
dx2 . . . ρ(x1, x2, . . .), (D.11)

where h is Planck’s constant and xi is a generalized coordinate (the constant factors for

ρ and Z are ignored hereafter). The projection of the equilibrium distribution function

from the space (x1, x2) onto the space (x1) is carried out by integrating with respect to

the variable x2,

ρ(x1) =
∫
dx2ρ(x1, x2). (D.12)

In particular, a distribution function ρ(p′,q′) that is projected from the extended system

onto the physical system is need. Since the total Hamiltonian, Eq. (D.3), is conserved

in the extended system, this method produces a µ-canonical ensemble. The distribution

function ρ(p,q, ps, s) is expressed as a Dirac delta function, δ(H − E). The shortened

forms dp = dp1dp2 . . . dqN , dq = dq1dq2 . . . dqN , and H0(p,q) =
∑

i p
2
i /2mi + φ(q)

are used. The partition becomes

Z =
∫
dps

∫
ds

∫
dp
∫
dqδ

[
H0(p/2,q) + p2

s/2Q+ gkbT ln s− E
]
. (D.13)
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The virtual momenta pi and coordinates qi are transformed to the real variables p′i =

pi/s, q′i = qi. The volume element is dpdq = s3Ndp′dq′. Hence,

Z =
∫
dps

∫
dp′
∫
dq′
∫
ds · s3Nδ

[
H0(p′,q′) + p2

s/2Q+ gkBT ln s− E
]
. (D.14)

Because the argument of the δ function in the above equation has only one zero as a

function of the variable. s, we can use the equivalence relation δ [f(s)] = δ(s−s0)/f ′(s0),

where s0 is the zero of f(s).

Z =
1

gkBT

∫
dps

∫
dp′
∫
dq′
∫
ds · s3N+1δ(s− exp{−

[
H0(p′,q′) + ps/2Q− E

]
/gkBT})

=
1

gkBT
exp

[(
3N + 1

g

)
E/kBT

] ∫
dps exp

[
−
(

3N + 1
g

)
p2
s/2QkBT

]
∫
dp′
∫
dq′ exp

[
−
(

3N + 1
g

)
H0(p′,q′)/kBT

]
. (D.15)

Upon choosing g = 3N+1, the partition function of the extended system is equivalent to

that of the physical system in the canonical ensemble except for a constant factor:

Z = C

∫
dp′
∫
dq′ exp

[
−H0(p′,q′)/kBT

]
. (D.16)



Appendix E

Algebra for the correlation

function

Cv(t2 − t1) = 〈(v(t2)− 〈v(t2)〉) · (v(t1)− 〈v(t1)〉)〉ξ

= 〈
∫ t2

0
dse−λ(t2−s)f(s) ·

∫ t1

0
dse−λ(t1−s)f(s)〉ξ

=
∫ t2

0

∫ t1

0
ds1ds2e

−λ(t1+t2−s1−s2)〈f(s1)f(s2)〉ξ

=
∫ t2

0

∫ t1

0
ds1ds2e

−λ(t1+t2−s1−s2)σ2δ(s1 − s2)

= σ2

∫ t=min(t1,t2)

0
ds2e

−λ(t1+t2−2s2)

=
σ2

2λ
e−λ(t1+t2)

∫ t

0
dyey

=
σ2

2λ
(e2λt − 1)

=
σ2

2λ
{e−λ(t1+t2−2t) − e−λ(t1+t2)} (E.1)

Finally, noting that whether t = t1 or t = t2, the difference of t1 and t2 is positive.

55



Appendix E. Algebra for the correlation function 56

Therefore, we arrived at

Cv =
σ2

2λ
{e−λ|t1−t2| − e−λ(t1+t2)} (E.2)



Appendix F

Implementing Ito Calculus

As shown in the previous appendix that the Langevin equation can be written in the

following form

d~x = Z~xdt+ Dd~ξ (F.1)

where D is a diagonal matrix and

~x =

 ~q

~p

 (F.2)

In order to solve this stochastic differential equation, we define a matrix by taking the

tensor product of ~x

C = 〈~x⊗ ~x〉 (F.3)

We proceed by taking the derivative of the product of the vector components:

d(xixj) = (xi + dxi)(xj + dxj)− xixj

= xidxj + (dxi)xj + dxidxj

= xi
∑
k

Zjkxkdt+ xiDjdξj + (
∑
k

Zikxk)xjdt+ xjDidξi +DiDjdξidξj (F.4)
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Taking an average of Eq. (F.4) and using the property 〈dξidξj〉 = δijdt, Eq.(F.4) sim-

plifies to
d〈xixj〉
dt

=
∑
k

Zjk〈xixk〉+
∑
k

Zik〈xkxj〉+ δijD
2
i (F.5)

Since Cij = 〈xixj〉, the above equation yields:

dC
dt

= CZT + ZC + Y (F.6)

in which Yij = D2
i δij .



Appendix G

Fokker-Planck Equation

Recall that the Langevin equation takes the following form:

dx

dt
= −γx+ bξ(t) (G.1)

where b are both functions of x and t. The physical meaning of γ and b will become

clear at the of this derivation.

Let us consider an arbitrary function x(t):f [x(t)]. We would like to know what stochastic

differential equation it obeys. We start by considering a general function f [x(t)], whose

derivative can be written as

df [x(t)] = f [x(t) + dx(t)]− f [x(t)]

= f [x(t)] + f ′[x(t)]dx+
1
2
f ′′[x(t)](dx)2 − f [x(t)] + · · ·

= f ′[x(t)]{−γxdt+ bξ(t)dt}+
1
2
f ′′[x(t)]{−γxdt+ bξ(t)dt}2 + · · · (G.2)

By definition, ξ(t)dt = dW (t), where dW (t) denotes the wiener process. Therefore, we
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obtain

df [x(t)] = f ′[x(t)]{−γxdt+ bdW (t)}+
1
2
f ′′[x]{γ2x2dt2 + b2dW (t)2 − 2γxbdW (t)dt}

= f ′[x(t)]{−γxdt+ bdW (t)}+
1
2
f ′′[x(t)]b2dW (t)2

= {−γxf ′[x(t)] +
1
2
b2f ′′[x(t)]}dt+ bf ′[x(t)]dW (t). (G.3)

In the above equation, we have used the definition dW (t)2 = dt, dt2 = 0 and dW (t)dt =

0. The time development of f [x(t)] is simply

〈df [x(t)]〉
dt

= 〈df [x(t)]
dt

〉 =
d

dt
〈f [x(t)]〉

= 〈−γxf ′[x(t)] +
1
2
b2f ′′[x(t)]〉 (G.4)

Now, taking into consideration that x(t) follows a distribution ρ[x(t)], the above equa-

tion becomes

d

dt
〈f [x(t)]〉 =

d

dt

∫
ρ[x(t)]f [x(t)]dx =

∫
dxf [x(t)]

d

dt
ρ[x(t)]

〈−γxf ′[x(t)] +
1
2
b2f ′′[x(t)]〉 =

∫
dx{−γxf ′[x(t)] +

1
2
b2f ′′[x(t)]}ρ[x(t)]

=
∫

d

dt
ρ[x(t)]f [x(t)]dx (G.5)

Integrating by parts and ignoring surface terms, we obtain:

∂

∂t
ρ[x(t)] = γ

∂

∂x
[x(t)ρ[x(t)]] +

1
2
∂2

∂x2
[b2ρ[x(t)]] (G.6)

Eq. (G.6) is known as the Fokker-Planck Equation. It captures the diffusion process

defined by a drift coefficient γ and a diffusion coefficient b2.
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