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Abstract

This thesis investigates dynamics in leaking systems with and without amplification.

On the one hand, we introduce and investigate both theoretically and experimentally

a new measure of Anderson localization in random media which takes absorption into

account. On the other hand, we study wave propagation in a new class of synthetic

optical materials (periodic or random) where gain and loss are judiciously tailored.

These two seemingly different types of problems are nicely brought together in the

framework of non-Hermitian Hamiltonian formalism.
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and younger brother Xi Dong.

To my spiritual family: I would like to thank all of my leaders, especially Inchul Bae

’08 and Yashan Zhou ’09 for their daily prayers and constant phone calls and messages

of comfort and hope. Also, I would like to thank my co-workers from the Youth Evan-

gelical Fellowship (formerly known as WesApostolos): Shipra Kanjlia ’12, Seung Kwon

(Joseph) Yang ’12, Jean Lionel Nyange ’12, Linda Kung ’12, Jonathan Silva ’12, and

Daniel O’Sullivan ’11.

Lastly, but most importantly, I would like to thank the α and ω of my life – Almighty

God.



Contents

1 Introduction 1

2 Fidelity 4

2.1 Stability of Motion and Irreversibility . . . . . . . . . . . . . . . . . . . 5

2.2 Loschmidt Echo Vs. Fidelity . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Fidelity and Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Fidelity and Chaotic Dynamics . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Standard Perturbative Regime . . . . . . . . . . . . . . . . . . . 12

2.4.2 Wigner (FGR) Regime . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Non-Perturbative Regime . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Scattering Fidelity 15

3.1 The Scattering Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Scattering Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Scattering Fidelity in Chaotic Systems . . . . . . . . . . . . . . . . . . . 20

3.3.1 Microwave Experiments . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Acoustic Experiments . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Anderson Localization 24

iv



4.1 Anderson Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Periodic Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.3 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.4 Localization Length . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.5 Thouless Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.6 Weak Disorder Approximation of Localization Length . . . . . . 33

4.2 Experimental Observations of Anderson Localization . . . . . . . . . . . 36

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Random Matrix Theory Modeling 41

5.1 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Banded Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Properties of BRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Scaling Theory of Localization . . . . . . . . . . . . . . . . . . . 46

5.4 Level Velocity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Fidelity as a probe for Anderson Localization-Theoretical Modeling 55

6.1 Fidelity in the framework of BRM . . . . . . . . . . . . . . . . . . . . . 56

6.1.1 Fidelity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.2 Local Density of States (LDoS) Analysis: Some basic facts . . . 58

6.2 Fidelity - Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 The Perturbative Regime . . . . . . . . . . . . . . . . . . . . . . 61

6.2.2 The Fermi Golden Rule Regime . . . . . . . . . . . . . . . . . . . 63

6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Fidelity as a probe for Anderson Localization-Experimental Results 67

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Signature of Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 Diffusive Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.2 Localized Regime with small perturbations . . . . . . . . . . . . 74

7.3.3 Localized regime with moderate perturbation . . . . . . . . . . . 76

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 PT -Symmetry 80

8.1 Introduction to PT -symmetric systems . . . . . . . . . . . . . . . . . . . 81

8.1.1 The Dimer: Eigenvalues and Eigenvectors Analysis . . . . . . . . 82

8.1.2 The Dimer: Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Experimental Realizations of PT -Symmetric Systems in Optics . . . . . 88

8.2.1 Loss-induced Transmitivity in Passive PT -symmetric Waveguides 89

8.2.2 Observations of PT -dynamics in Photorefractive structures . . . 91

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 PT -Optical Lattices 95

9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2 Dimeric PT -symmetric lattices . . . . . . . . . . . . . . . . . . . . . . . 96

9.2.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2.2 Eigenvector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2.3 Beam Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10 Conclusions and Outlook 111

A Fidelity and Decoherence 113

A.1 Static bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Dynamical bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B Expansion Coefficients of Fidelity 116



C Exact vs. Broken PT -phase 118

D PT -symmetric potential 120

E Total Intensity 121



List of Figures

2.1 Schematic view of Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Interference experiment in an Aharonov-Bohm ring . . . . . . . . . . . . 9

3.1 A Pictorial Description of the Scattering Matrix . . . . . . . . . . . . . 17

3.2 Experimental Scattering Fidelity Decay in a Chaotic Microwave System 21

3.3 Experimental set up of an Elastodynamic Billiard . . . . . . . . . . . . . 22

3.4 Results of Scattering Fidelity for Acoustic Waves . . . . . . . . . . . . . 23

4.1 Numerical Computation of l∞ . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Anderson localization in an Acoustic system . . . . . . . . . . . . . . . . 36

4.3 Anderson localization in an Optical system . . . . . . . . . . . . . . . . 38

4.4 Anderson localization in BEC . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Sketch of BRM for a diffusive system . . . . . . . . . . . . . . . . . . . . 45

5.2 Sketch of BRM for a localized system . . . . . . . . . . . . . . . . . . . 45

5.3 Eigenstate structures for a diffusive system . . . . . . . . . . . . . . . . 47

5.4 Eigenstate structures for a localized system . . . . . . . . . . . . . . . . 47

5.5 The scaled localization length β Vs. b2

N for different system sizes . . . . 49

5.6 A double log plot of the scaled localization length β Vs. b2

N . . . . . . . 49

5.7 Scaling behavior of lH for standard BRM . . . . . . . . . . . . . . . . . 50

5.8 Sketch of the quarter Sinai billiard and rectangular billiard with randomly

distributed scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



5.9 Eigenvalue level dynamics spectra for the quarter Sinai billiard and rect-

angular billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 Level velocity distribution for real symmetric matrices . . . . . . . . . . 54

6.1 A sketch of the LDoS profile in the 3 different regimes . . . . . . . . . . 60

6.2 LDoS kernel Pnm for small perturbations in the localized regime . . . . 62

6.3 Theoretical fidelity in the localized regime with small perturbations . . . 64

6.4 LDoS kernel Pnm for moderate perturbations . . . . . . . . . . . . . . . 65

6.5 Theoretical fidelity for moderate perturbations . . . . . . . . . . . . . . 66

7.1 Experimental Set-up of Microwave Cavity filled with Random Scatterers 69

7.2 Average variance of the normalized transmission, σ2
T̃

, Vs. microwave

frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Distribution of the normalized transmissions within the localized fre-

quency window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 A typical fidelity decay in the diffusive frequency window . . . . . . . . 73

7.5 The scaling of the free-fit parameter, x, within the diffusive frequency

window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.6 A typical fidelity decay for the standard perturbative regime in a localized

frequency window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 Scaling analysis of the fitting parameters within the localized frequency

window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.8 Fidelity decay for the FGR regime in a localized frequency window . . . 77

7.9 Scaling analysis of the exponential fitting parameter, Γ, for localized fi-

delity in the Wigner regime . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1 Illustration of a PT -symmetric dimer . . . . . . . . . . . . . . . . . . . 82

8.2 Eigenvalues of a PT -symmetric system Vs. gain/loss, γ . . . . . . . . . 83

8.3 Eigenvectors of a PT -symmetric dimer for different γ . . . . . . . . . . . 84

8.4 Inverse Petermann factor 1
K̄2

, for the simple dimer . . . . . . . . . . . . 86



8.5 Numerical simulation of beam propagation for a PT -symmetric dimer . 88

8.6 Experimental set-up for the “passive” PT -symmetric dimer . . . . . . . 89

8.7 The total transmission of a passive PT -symmetric dimer Vs. loss . . . . 90

8.8 Experimental set-up for the “active” PT -symmetric dimer . . . . . . . . 92

8.9 Beam propagation in the “active” PT -symmetric dimer . . . . . . . . . 93

9.1 Numerical simulation result of intensity evolution in an extended periodic

PT lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 Illustration of the PT -symmetric lattices . . . . . . . . . . . . . . . . . . 97

9.3 Imaginary part of the energy vs. γ for the case κ
c < 1 . . . . . . . . . . 100

9.4 Spectra Vs. γ for the case κ
c > 1 . . . . . . . . . . . . . . . . . . . . . . 101

9.5 Spectra Vs. γ for the case κ
c > 1 with disorder . . . . . . . . . . . . . . 102

9.6 The scaling function of γPT . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.7 Distribution of the γPT . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.8 The inverse Petermann factor 1/K̄ as a function of γ̄ . . . . . . . . . . . 105

9.9 The distribution of the Petermann factors P (K̄) near γPT . . . . . . . . 106

9.10 The temporal behavior of the total beam power for three different values

of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.11 The survival probability pq(z) of representative momentum components

for the periodic dimer at γ = γPT . . . . . . . . . . . . . . . . . . . . . . 109



Chapter 1

Introduction

The theoretical formalism of Non-Hermitian Hamiltonians was invented in order to

describe in a phenomenological way open systems i.e. systems that are interacting with

their environment [1, 2]. Eliminating the environmental degrees of freedom leads to a

modification of the original Hermitian problem into a non-Hermitian one. Such example

cases are many and well known in theoretical physics: a quantum system coupled to

a reservoir, a cavity with absorbing boundaries where (classical) wave propagation is

under investigation, a medium with gain solution in optics, etc.

In the first part of this thesis (Chapters 2-7), we will apply the non-Hermitian Hamil-

tonian formalism to model classical wave transport in random media with absorption.

This study aims to promote the notion of the so-called scattering fidelity, which in-

vestigates the sensitivity of the wave dynamics to small perturbations of the system.

We were able to show how scattering fidelity can probe localization phenomena in such

set-ups. The validity of our theoretical results were confirmed via direct contrast with

microwave experiments performed with disordered cavities. The outcome of this activity

was published in Phys. Rev. Lett. [3] while a longer report of our findings was recently

published in APPA [4].

1



Chapter 1. Introduction 2

Although we have used the theoretical formalism of Non-Hermitian Hamiltonians to

model systems with only absorption, recent development has tailored this methodology

to study systems with amplification in addition to absorption. This concept will be the

focus of the second part of this thesis (Chapters 8-9); namely, we will apply the Non-

Hermitian Hamiltonian formalism in order to understand beam propagation in a new

type of synthetic optics material which incorporates both loss and gain in a balanced

manner such that the total number of photons remains constant. Such systems (known

as PT -symmetric systems) are described by an effective Hamiltonian that commutes

with the combined Parity (P) and Time (T ) operator. These results were recently

reported in Ref. [5].

More specifically, the structure of this thesis is as follow:

• In Chapter 2, we will review the notion of fidelity–a measure of the stability of

a system under small perturbations. We will discuss its role in the framework

of decoherence and quantum irreversibility. The temporal behavior of fidelity

will be distinguished depending on the strength of the perturbation and three

characteristic regimes will be identified and theoretically analyzed.

• In Chapter 3, we will study fidelity in an experimental framework and introduce

the notion of scattering fidelity–a variant of the standard fidelity that is based on

scattering matrices. We will review the basic formalism associated with scattering

fidelity and present some recent experimental results with microwaves and acoustic

waves.

• In Chapter 4, we will introduce Anderson localization in random media. This

will include the introduction of the main mathematical model and the quantity

that characterizes localization – the localization length. We will conclude with the

observations of localization phenomena in experimental systems such as acoustic

waves, matter waves, and photonic systems.

• The history of Random Matrix Theory and its success in modeling chaotic systems
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will be discussed in Chapter 5. In particular, we will focus on Banded Random

Matrices, which are applicable to describe disordered media with Anderson lo-

calization. In this respect, we will review some properties of this type of model;

namely, the scaling behavior of the so-called entropic lengths, and also the statis-

tical properties of the level velocities.

• We will use Banded Random Matrices (BRM’s) to model fidelity in diffusive and

localized random media in Chapter 6. In this chapter, we will propose an alterna-

tive approach to the calculation of fidelity which makes use of the so-called Local

Density of States. Important conclusions are drawn and a novel temporal behavior

of the fidelity is found, which reflects the degree of localization of the media.

• In Chapter 7, we will introduce the chaotic cavity experiment that was performed

to measure the scattering fidelity in both the diffusive and localized regimes. We

will then compare the results of this experiment with the theoretical fidelity dis-

cussed in Chapter 6. Such comparison validates our modeling presented in the

previous chapter.

• Chapter 8 motivates the second part of this thesis. We will introduce the con-

cept of PT -Symmetry and discuss its properties via the simplest possible system,

which finds its footing in the framework of optics. We will conclude with the pre-

sentation of some counterintuitive results from recent experimental realizations of

this system.

• In Chapter 9, we will introduce an array of coupled PT -optical waveguides. We

will analyze the statistical properties of its eigenvalues and eigenvectors. The

final goal of this study is to achieve a good theoretical understanding of PT -beam

propagation.

• In Chapter 10, we will conclude with the main points of the thesis and provide

some future outlook.



Chapter 2

Fidelity

Newtonian mechanics leaves open the possibility that a particle undergoing a time evo-

lution will return to its original state once we reverse its velocity. However, this reversal

process is not observed in our daily experiences, i.e. an ice cube dissolving in a cup of

boiling water leads to a cup of lukewarm water, but we can’t get back a cup of boiling

water with floating ice cubes from a cup of lukewarm water. This “reversibility para-

dox” was brought about by Joseph Loschmidt’s question toward Ludwig Boltzmann’s

second law of thermodynamics, which states that the entropy of an isolated system will

increase over time. Loschmidt claimed that if one could reverse all the velocities, one

should be able to go from equilibrium towards the initial non-equilibrium state, i.e. a

state with a lower entropy. To that, Boltzmann replied, “Then try to do it!” Can we

do it?

In section 2.1 of this chapter, we will discuss the concept of irreversibility and the stabil-

ity of both classical and quantum systems. In section 2.2, we will introduce fidelity and

its role in defining the stability of a system to external perturbations. In section 2.3,

we will extend the parametric form of the external perturbation to a dynamical one;

thereby connecting the notion of fidelity with the study of dephasing. In this respect,

we will analyze two types of external environments that illustrate the concept of deco-

4
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herence and its correspondence to fidelity. Finally, in section 2.4, we will briefly review

the known results of fidelity in chaotic systems. Our conclusions will be presented in

section 8.3.

2.1 Stability of Motion and Irreversibility

In the classical example of ice dissolving in a cup of boiling water over time, irreversibility

can be understood through the concepts of mixing and coarse graining. Following

closely the explanation provided in [6–9], to understand the notion of mixing in chaotic

systems, let us consider two finite but fixed subsets of phase space, V1 and V2, whose

measures are fractions µ1 and µ2 of the total phase space. Supposed that the distribution

f1(p, q) ((p, q) is the generalized canonical coordinates) is uniform in V1 at time t1, with∫
f1dV1 = 1. Then, for any time t2 sufficiently remote from t1 (in the future or the

past) and for sufficiently large µ1 and µ2, we have |
∫
f2dV2 − µ2| < δ, with arbitrarily

small δ, irrespective of where V1 is. This is the known property of mixing in chaotic

systems [1]. From this property, it becomes obvious that the smaller δ or µ1 or µ2, the

larger the time |t1 − t2| is needed for mixing.

In the ice-cube example, µ1 represents the ice cube with boiling water and µ2 represents

the lukewarm water. In this case, µ1 << µ2 ' 1. Therefore, with a suitable value of the

total energy, almost every evolution will give us a cup of lukewarm water, with extremely

small inhomogeneity. Even so, we can still “conceptually” prepare the lukewarm water

at time t2 so that, at a later time t1 it will separate into an ice cube with boiling water.

But in order for this to occur, it will require a very special preparation (not just any

cup of lukewarm water, but one with delicate correlations between all of the molecules)

and this preparation has a tiny µ2 such that the mixing property, as defined above, will

not yet be valid after the given finite time t1 − t2.

Since the idea of mixing is time symmetric, it cannot by itself explain irreversibility.
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Therefore, we need to introduce coarse graining – which surfaced from the fact that we

may not be able to achieve high-precision in making the special preparation described

above due to the imperfection of the instruments used. Due to this fact, we cannot

prepare the system at time t2 such that, after a finite time t1 − t2, it will be located

with certainty in the desired small region V1 of phase space. Therefore, there are classical

evolutions (ie. from lukewarm water to an ice cube floating in boiling water) that cannot

take place as a result of mixing and coarse graining.

Although mixing and coarse graining explain classical irreversibility, they fail in explain-

ing quantum irreversibility. The property of mixing in the classical world as described

above is not well defined in the quantum world due to the uncertainty principle – a

distribution in phase space cannot develop structures on scales which are smaller than

~. In addition, coarse graining also does not apply in the quantum world where the

dynamical variables have discrete values. In principle, it is possible to prepare arbi-

trary, pure quantum states. Since the Hamiltonian evolution is unitary, even if there

is a small error in the preparation of the initial state, this error will remain constant.

Two initially neighboring states will always remain neighbors in Hilbert space.

Therefore, Peres proposed a new way of understanding reversibility that is applicable in

both classical and the quantum physics [6]. Instead of assuming that our initial prepara-

tions are marred by limited accuracy, we may assume that they are perfect, but, on the

other hand, the Hamiltonian is not exactly known because we cannot perfectly isolate

the physical system from its environment. Thus, the forward evolution Hamiltonian

H1 differs from the evolution of the time-reversed Hamiltonian H2. The comparison of

these two slightly different evolutions was proposed as a measure of irreversibility of the

system and a new measure termed Loschmidt Echo, was introduce in order to quantify

the stability of the dynamics to small environmental perturbations.
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2.2 Loschmidt Echo Vs. Fidelity

The theory of Loschmidt echo has been a subject of intensive research activity during

the last years (for a recent review see [10, 11]). This interest has been motivated by

various areas of physics, ranging from atomic optics [12–14], microwaves [15] and elastic

waves [16], to quantum information [17] and quantum chaos [18–35]. It has been adopted

as a standard measure for quantum reversibility and stability of quantum motion with

respect to changes in an external parameter x. Formally, the fidelity F (t) is defined

as

F (t) ≡ |〈ψ0|eiH2te−iH1t|ψ0〉|2; ~ = 1 (2.1)

where H1 and H2 = H1 + xB represent the reference Hamiltonian and its perturbed

variant, respectively, while |ψ0〉 is an initial preparation. Equation (2.1) allows for

two different, though mathematically equivalent, interpretations of fidelity as shown in

Fig. 2.1. It can be considered as the overlap of an initial state with the state obtained

after the forward unperturbed evolution, followed by a backward perturbed evolution. In

this interpretation (shown by the blue arrows in Fig. 2.1), F (t) is known as Loschmidth

Echo (LE). Equivalently, F (t) can be seen as the overlap of a state obtained after a

forward unperturbed evolution and the state after a forward perturbed evolution. The

latter interpretation is closely linked to the concept of dephasing [36–38] in mesoscopic

devices and coherent manipulation of a quantum state. Sustaining the coherence of

a superposition of state vectors is at the heart of quantum parallelism in quantum

computation schemes [17, 39, 40]. The first interpretation goes back to the original

proposal by Peres [6], who used fidelity to study quantum-classical correspondence and

identify traces of classical (chaotic or integrable) dynamics in quantized systems.

While the issue of reversibility was already discussed in the previous section, the follow-

ing section will focus the role of fidelity in the framework of decoherence by borrowing

the idea of the Aharonov-Bohm ring from electronics physics.
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Figure 2.1: Schematic view of the two interpretations of fidelity. Fidelity, F (t) =

|〈ψ1|ψ2〉|2 is shown by the red arrow and the Loschmidt Echo, FLE(t) = |〈ψ0|ψLE(t)〉|2

is shown by the blue arrow. In the latter scheme |ψLE(t)〉 = exp(iH2t) exp(−iH1t)|ψ0〉

as shown in the figure. However, F (t) = FLE(t). Figure taken from [8].

2.3 Fidelity and Decoherence

An example of the Aharonov-Bohm ring is illustrated in Figure 2.2, where a charged

particle travels through a ring from point A to point B taking either the left or the

right path. It is assumed that the interaction of the system with the bath occurs only

along the right path and that the back reaction of the bath on the system is small [39].

Similar to the double slit experiment where the interference pattern observed on a

screen tells us about the angle at which light is entering the slit for example, in this

two-path experiment, the interference pattern at point B will tell us which path the

particle took. If the bath detects the path of the particle, no interference pattern will

be seen; thereby, telling us that the particle has decohered. On the other hand, if there

is no or only partial detection of the path of the particle by the bath, some interference

pattern will be observed with its intensity reflecting the degree of coherence of the

particle. Intuitively, this is very similar to our notion of fidelity, where coherent particle
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Figure 2.2: An illustration of an interference experiment in an Aharonov-Bohm ring:

a particle travels through a ring with a perpendicular magnetic field from point A to

point B where the interference is measured. It is assumed that the interaction of this

system with the bath occurs only along the right path. At point B, decoherence due

to the system-bath interaction affects the interference (or lack of it) between two arms.

Figure taken from [40] and referenced herein.

corresponds to F (t) = 1 and decoherent particle corresponds to F (t) = 0 with the

degree of coherency ranging between 0 and 1. This relationship between coherency of

particle and the concept of fidelity can also be seen quantitatively by following closely

the arguments provided in [39]. At time t = 0, the ring experiment can be describe

by a wavefunction that is a superposition of a particle taking the left path l(x, t) and

the right path r(x, t) and an initial state of the bath χ0(η), where η is its internal

degree of freedom. Therefore, the initial wavefunction of the particle takes the following

form:

ΨA(t = 0) = [l(x = A, t = 0) + r(x = A, t = 0)]⊗ χ0(η). (2.2)

At the point x = B, the wavefunction is given by

ΨB(t = t0) = [l(x = B, t = t0)⊗ χl(η) + r(x = B, t = t0)]⊗ χr(η) (2.3)
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which takes into account that the bath’s state will evolve differently depending on the

path of the particle. The interference term is

2<e[l∗(B, t0)r(B, t0)]
∫
dηχ∗l (η)χr(η). (2.4)

Since no direct measurement of the bath is made and therefore there is no knowledge of

the state of the bath, the integration is done over all possible states of the bath. If the

bath is not present, the left and right state will be the same, χl = χr; thus the interfer-

ence term will be equal to 2<e[l∗(B, t0)r(B, t0)]. Therefore, the effect of the interaction

with the bath is to multiply the interference term by the factor
∫
dηχ∗l (η)χr(η) which

takes a value between 0 and 1. The effect can be understand in two ways. The first

way is to consider how the particle affect the bath. If the bath is not affected by the

moving particle, then the interference pattern can be observed and remains unchanged.

However, if the state of the bath is affected in such a way that one can determine the

path of the particle, then the interference pattern may no longer be observed because

quantum interference results from the uncertainty in the path. Another way is to con-

sider the perspective of the system, i.e. the particle. In this case, the partial wave

r(x, t) experiences a potential traveling through the bath; thereby acquiring an addi-

tional phase φ which depends on the dynamics and state of the bath. In the case where

this phase is π/2, the interference can no longer be observed [7]. A detail presentation

of the decoherence of a particle due to its interaction with two types of baths (a static

and a dynamic one) is given in the Appendix A.

2.4 Fidelity and Chaotic Dynamics

In classical systems, the stability of a trajectory with respect to small perturbations to

initial conditions determined whether the dynamics is regular or chaotic. A quantita-

tive description is given by the so-called Lyapunov exponent which defines the degree

of divergence (in time) of two nearby initial trajectories. In the field of quantum chaos,
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one investigates how the notions of chaotic and regular motions of classical mechanics

can be transferred to quantum mechanics. Due to the unitarity of quantum dynamics,

quantum chaos cannot be defined in the same way as classical chaos, namely, through

the exponential sensitivity on the variation of initial conditions. Moreover, quantum

mechanics is a probabilistic theory and as such, does not incorporate the notion of indi-

vidual trajectories. But is there a quantum analog? As discussed in section 2.1, Peres

proposed to study the stability of a quantum system as the change in the dynamical

evolution of a specific state against a change of the Hamiltonian via the notion of fi-

delity. Promoting this idea further, T. Prosen and collaborators formulated a general

linear response approach to calculate the temporal behavior of fidelity (Eq. (2.1)) [27].

Specifically, using time-dependent perturbation theory one can arrive to the following

expression of fidelity

F (t) ' 1− x2

∫ t

0
dτ

∫ τ

0
dτ ′C(τ, τ ′) + · · ·

≈ exp
[
−x2

∫ t

0
dτ

∫ τ

0
dτ ′C(τ, τ ′)

]
, (2.5)

where C(τ, τ ′) = 〈B(τ + τ ′)B(τ)〉 is the two-point time-correlation function of the

perturbation, B (see Eq. (2.1)), in the Heisenberg picture. Eq. (2.5) can be interpreted

in terms of a dissipation-fluctuation relationship. On the left hand side we have fidelity

which describes dissipation of quantum information and on the right hand side we

have an integrated time-correlation function (fluctuation). A simple-minded qualitative

conclusion drawn from this equation says: The stronger the decay of correlations the

slower the decay of fidelity and vice versa. As a consequence of this conclusion, it follows

that stronger correlation decay (typically associated with stronger classical chaos of the

underlying classical counterpart) means higher fidelity, or slower decay of fidelity. This

has been quite an unexpected result as it seems just the opposite to a naive expectation

that an integrable system will dissipate information slower than a chaotic one.

The temporal behavior of fidelity depends on the strength of the external perturbation,

x defined in Eq. (2.1). Indeed, fidelity studies have identified three regimes: the standard
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perturbative regime, the Fermi Golden Rule regime (FGR) or the Wigner regime, and

the non-perturbative regime.

2.4.1 Standard Perturbative Regime

Let us consider our system to be defined in a finite Hilbert space of size N . For such

a system, the correlation function in Eq. (2.5) will reach a finite value, σ2. The time-

averaged correlation function C(τ, τ ′) can be calculated as

σ2 = lim
t→∞

1
t2

∫ t

0
dτ

∫ τ

0
dτ ′C(τ, τ ′). (2.6)

This integral can be evaluated [41] via the notion of the perturbation matrix, B, giv-

ing

σ2 = 〈|Bnm|2〉E , (2.7)

where 〈· · · 〉E corresponds to an ensemble average. This plateau value is reached at

t ∼ tH , where tH is the dimensionless Heisenberg time, tH = 1/∆ = N , in which ∆ is

the mean level spacing (i.e. mean distance between unperturbed levels). For t ≥ tH ,

the correlation in Eq. (2.5) is equivalent to the plateau value, σ2. Substituting this back

in to Eq (2.5) yields the fidelity

F (t) ≈ exp(−[γgt]2) (2.8)

where the decay rate γg scales as

γg ∝ xσ (2.9)

In order to see this Gaussian decay before the Heisenberg time, the decay rate must be

very slow, which can be achieved by requesting the external perturbation strength, x,

to be very small. How small? Since the breakdown occurs at tH , equating the decay

rate γg with the inverse of this time will give the characteristic perturbation strength,

xc,

γg ∼ t−1
H −→ xc ∼

∆
σ

(2.10)
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This regime, for which x < xc, is known as the standard perturbative regime. What

about for x > xc?

2.4.2 Wigner (FGR) Regime

For x > xc, we need to take into account the behavior of the autocorrelation function,

C(τ), which is nearly constant over a correlation timescale, tc, before rapidly decaying to

zero. Since the correlation fluctuates around zero for t > tc, the integration in Eq. (2.5)

can be extended over all times and results in σ2. With an infinite order-resummation,

one gets

F (t) ' 1− (xσ)2

∆
t ≈ exp(−γet) (2.11)

i.e. for t > tc, the fidelity behaves exponentially with a decay rate given by the Fermi

Golden Rule transition rate:

γe ∝
σ2x2

∆
, (2.12)

where ∆ is again the mean level spacing. This is the so-called Wigner (or Fermi-Golden

Rule) regime. What about x� xc?

2.4.3 Non-Perturbative Regime

For very large perturbations x, we enter the non-perturbative regime where Linear Re-

sponse Theory is no longer applicable. This limitation of the Linear Response Theory

can be evaluated by equating the rate γ−1
e with the classical correlation time, tc, yield-

ing

xprt ∼ xc

√
∆b

∆
, (2.13)

where ∆b = b∆. In this regime, semiclassical methods yield the following fidelity de-

cays

F (t) ∼ e−Λt (2.14)
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where Λ is the classical Lyapunov exponent characterizing the chaoticity (sensitivity)

of the classical motion. Notice that for this regime, the fidelity decay is independent on

the perturbation strength, x. [20, 42–44]. In other words, as the perturbation strength

becomes larger, the decay of fidelity is dictated by the classical dynamics. Kottos and

Cohen [37] gave a clear explanation of this, by pointing out that the x � 1 limit is

equivalent to the semiclassical ~→ 0 limit.

2.5 Summary

We introduced an analog to study chaos in quantum systems via the notion of fidelity

(a.k.a. Loschmidt Echo); namely, fidelity can be used as a measure of irreversibility and

stability of quantum chaotic systems due to external perturbations. The correspondence

between fidelity and decoherence was also discussed; thereby, accounting for dynamical

perturbations in addition to parametric perturbations. Lastly, a brief review of the

fidelity decay, depending on the perturbation strength x, was given. These main results

were primary found based on a LRT calculation. Armed with this knowledge we will

be able to, in the next chapters, recognize the novel features of fidelity decay that we

have found for disordered systems and also appreciate the strength of the alternative

approach (based on the analysis of the so-called Local Density of States) for the fidelity

calculation that we have used.



Chapter 3

Scattering Fidelity

The theoretical expression for fidelity defined in the previous chapter is hardly accessible

experimentally [4]. Therefore, the notion of the scattering fidelity which makes use of the

experimentally accessible scattering matrix was introduced in Ref. [15]. The latter, being

a unitary operator (because of current conservation), is interpreted as the generator of

dynamics (evolution matrix) in mode space, and replaces the actual evolution operator

Û1,2 = e−iH1,2t in the definition of fidelity.

In this chapter we will review the basic formalism associated with scattering fidelity

and present some recent experimental results with microwaves and acoustic waves. The

chapter is organized as follows: in section 3.1, we will introduce the concept of scattering

matrix for an open system. In section 3.2, the scattering fidelity will be defined using the

notion of the scattering matrix with absorption taken into account. In section 3.3, we

will discuss the experimental results of the temporal behavior of the scattering fidelity

in chaotic microwaves (section 3.3.1) and acoustic waves (section 3.3.2) systems and

we will compare the experimental results to the theoretical predictions of the previous

chapter. Finally, we will present our summary in section 8.3.

15
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3.1 The Scattering Matrix

Having a theoretical understanding of fidelity is essential; however, one also needs to

see how well the theory stands up to experimental measurements. Since the first spin-

echo experiment by Hahn [45], fidelity measurements have been performed with many

different quantum [46–48] and classical wave systems, most notably in classical mi-

crowave cavities whose investigations in the frame of wave chaos studies were pioneered

by Hans-Jürgen Stöckmann [49]. The cavities that were studied were typically flat,

with parallel sides, but with chaotic boundaries (examples of such cavities include Sinai

billiards and Bunimovich stadia). For microwave frequencies of ν < νcutoff = c
2L , where

L is the height of the cavity, the Helmholtz equation dictating the classical electromag-

netic waves with Dirichlet boundary conditions is equivalent to the quantum mechanical

Schrödinger equation:

∇2ψ(x, y) + E(ν)ψ(x, y) = 0; E(ν) =
(

2πν
c

)2

(3.1)

The above equivalence between the Helmholtz equation in microwave (two-dimensional)

cavities and the Schrödinger equation allow us to believe that one can extend this cor-

respondence to various observables as well i.e. use predictions that were derived in the

frame of quantum mechanical Schrödinger equation and compare them to measurements

from microwave experiments. The expectation is that via this process we will be able

to identify conditions/approximations/assumptions that were used in the theoretical

formulation of the problems that have limiting justification in actual physical circum-

stances. Fidelity is a natural candidate for such endeavor. Before moving on with this

comparison, the first problem that we have to solve is to re-formulate the whole fidelity

concept in a more experimental framework.

Since the theoretical definition of fidelity requires the notion of an unitary evolution

operator, Û1,2 = eiH1,2t (H1,2 are the two different Hamiltonians which generate the

dynamics), we need to introduce a similar concept which will incorporate experimental

measurements. Instead of following the evolution of wave packets, Stöckmann and
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collaborators proposed to measure stationary spectra of scattering matrix elements,

separately, for the perturbed and the unperturbed system. Then, for a given scattering

matrix element, they computed the Fourier transform of the cross-correlation function

between the two spectra. This resulted in the notion of the so-called scattering fidelity,

which relies on an experimentally accessible quantity i.e. the scattering matrix.

If M multiple incoming and outgoing scattering channels are considered, one can define

the M×M matrix, Ŝ(E), known as the scattering matrix (S-matrix), which can be seen

as a form of evolution that propagates an incoming wave to an outgoing wave. Formally,

we have:

|ψout〉 = Ŝ(E)|ψin〉, (3.2)

where |ψout〉, |ψin〉 are the outgoing/incoming waves. A pictorial explanation of the

scattering matrix is illustrated in Fig. 3.1.

Figure 3.1: A pictorial description of the scattering matrix. Ŝ(E) is the scattering

matrix for an open system with an effective Hamiltonian Ĥeff = Ĥint− i
2ŴŴ †, in which

Ŵ is a matrix that couples incoming/outgoing waves in from/out of the system and

Ĝ = 1
E−Ĥeff

is the Green’s function that governs the evolution inside the scattering

system.

The scattering matrix of an open system can take the following form [50]:

Ŝ(E) = 1− iŴ † 1
E − Ĥeff

Ŵ ; Ĥeff = Ĥint −
i

2
ŴŴ † (3.3)

where Ĥint is the Hamiltonian (of dimension N ×N) that describes the “closed” scat-

tering system and Ŵ is a matrix that couples incoming/outgoing waves in from/out
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of the system, to the scattering channels. In our case, Ĥint = Ĥ1 for the unperturbed

system and Ĥint = Ĥ1 + xB̂ for the perturbed system; which results in two different

scattering matrices Ŝ(E), and Ŝ′(E) correspondingly.

For microwave experiments, such as the ones in [51], the scattering channels are as-

sociated with one-mode antennae that feed microwave signal into the system from an

external source provided that the diameter of the antennae are small compared to the

wavelength of the incoming and outgoing waves. In this case, each column vector of

the (N ×M dimensional) coupling matrix, Ŵ , corresponds to one channel/antenna,

where the components, Wja, are proportional to the amplitude of the wavefunction at

the location of the antenna Wja ∝ ψj(ra).

Furthermore, in actual experimental circumstances, absorption mechanisms are present

and one has to consider them with extreme care as their presence might affect the

outcomes. How can we incorporate absorption in the scattering formalism? One way

to model absorption is by introducing in the effective Hamiltonian a diagonal matrix,

ΓW ; thereby allowing us to rewrite it in the following form

Heff = Ĥint −
(
i

2

)
[WW † + ΓW ]; ; (ΓW )n,m = δnmγw (3.4)

This is equivalent to modeling absorption with infinitely many perturbatively coupled

channels, whose partial widths add up to γW .

3.2 Scattering Fidelity

How can we use scattering matrix to define the scattering fidelity? Let us recall the

definition of the fidelity in Eq. (2.1). Let us now consider a scattering system, which

can be perturbed by changing the external parameter, x, in a controlled way. Suppose

that Ŝ(E) and Ŝ′(E) are the scattering matrices corresponding to the unperturbed and

perturbed system respectively. Then the cross-correlation function of the two scattering
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matrix elements can be denoted by

C[S∗ab, S
′
cd](E) = 〈S∗ab(E′)S′cd(E′ + E)〉 − 〈S∗ab(E′)〉〈S′cd(E′ + E)〉, (3.5)

where 〈· · · 〉 corresponds to an energy window and/or an ensemble average. Even though

the scattering matrix is defined in terms of energy, we may use its Fourier transform

S̃(t), to obtain a time-dependent quantity. By the convolution theorem, the above

equation is proportional to the Fourier transform of the individual S-matrix elements,

yielding the time cross-correlation function

C̃[S∗ab, S
′
ab](t) =

∫
dEe2πiEtC[S∗ab, S

′
ab](E) ∝ 〈S̃ab(t)∗S̃′ab(t)〉. (3.6)

Consider now our perturbed and unperturbed Hamiltonians, H ′int = Ĥ2 and Hint = Ĥ1

respectively. They each corresponds to the S-matrix defined in Eq. (3.3) (denoted by

S′ab and Sab) with an effective Hamiltonian defined in Eq. (3.4). The Fourier pair of S′ab

reads

S̃′ab(t) = −i
∫
dEe−2πiEtW (a)† 1

E −H ′eff
W (b) 'W (a)†e−2πiH′efftW (b) (3.7)

and similarly for Sab. Eq. (3.6) can now be evaluated [15] as

〈S̃ab(t)∗S̃′ab(t)〉 ∝ e−2πγW t〈ψb|eiHeffte−iH
′
efft|ψb〉, (3.8)

where |ψb〉 is an ortho-normal vector of the “closed” system. Notice that the above

expression looks like the fidelity amplitude for the effective Hamiltonian of the system.

However, this quantity is not constant even in the absence of perturbation. Instead, it

yields the autocorrelation function (i.e., the power spectrum), which decays according

to the exponential term in Eq. (3.8). Such decay is also present in simple systems such

as the ones studied by R. Blümel and U. Smilansky in [52]. In order to assure norm

conservation, we need to rescale the scattering fidelity amplitude by the autocorrelation;

thereby yielding

fab(t) =
〈Ŝ0∗
ab (t)Ŝ

x
cd(t)〉√

〈|Ŝ0
ab(t)|2〉 · 〈|Ŝxab(t)|2〉

(3.9)
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The scattering fidelity is then

Fs(t) = |fab(t)|2 (3.10)

It was proven in [15] that in the limit of weak coupling to the antennae, the scat-

tering fidelity, Fs(t) approaches the quantum mechanical definition of fidelity, F (t)

(Eq. (2.1)).

3.3 Scattering Fidelity in Chaotic Systems

In this section, we will showcase two experiments that have been done using the notion

of scattering fidelity in chaotic systems - one in microwave cavities and the other with

acoustic waves.

3.3.1 Microwave Experiments

Scattering fidelity for chaotic systems was investigated by R. Schäfer and H.-J. Stöckmann

in [15, 53]. They used a quasi-2D microwave cavity with large brass inserts to make

the boundary non-analytic (chaotic boundaries). This set-up is shown in the inset of

Fig. 3.2.

The perturbation is introduced into the system by small incremental shifting of the left

wall. Different realizations were obtained by moving the lower semicircular insert (gray

insert in the figure). The scattering matrix is measured with an experimental VNA and

the correlations of the fidelity transformed scattering matrix elements are numerically

found. The scattering fidelity amplitude, Eq. (3.9) for a given boundary realization is

then calculated as described in the previous section and averaged over different boundary

realizations. The main part of Fig. 3.2 shows the resulting experimental scattering

fidelity for the reflection of the right antenna. A good agreement is seen with the

theoretical LRT prediction of the Eq. (2.8) (orange line).
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Figure 3.2: The experimental scattering fidelity (black line) from the reflection of the

right antenna, compared to the LRT expectation of Eq. (2.8) (orange line). A nice

agreement is seen. Inset: experimental set-up of a chaotic microwave cavity formed by

non-analytic brass inserts in the cavity. X denotes antennae positions. The perturbation

to the system is introduced by small shifts in the left wall. Different realizations are

obtained by changing the position of the lower insert. Figure taken from [9, 53].

3.3.2 Acoustic Experiments

It has recently been shown [54] that scattering fidelity can be used to interpret experi-

ment in acoustic response [55]. In the experiment shown in Fig. 3.3, Lobkis and Weaver

have measured the sensitivity of elastic coda waves to temperature changes. This is done

by applying a pulse to the specimen (aluminum blocks of various shapes and sizes that

determines the dynamics of the system) and recording the response of that initial pulse

as a function of temperature. To study this response, they used the cross-correlation

function between these waves at different temperatures, T1 and T2. The response is

defined as

X(ε) =
∫
ST1(t)ST2(t[1 + ε])dt√∫
S2
T1

(t)dt
∫
S2
T2

(t[1 + ε])dt
(3.11)

Notice the similarity of this response to our definition of the scattering fidelity. The

integrals over a small time window in Eq. (3.11) corresponds to a smoothing of the
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Figure 3.3: Experimental setup consisting of an aluminum specimen is allowed to

cool in a vacuum as temperature and ultrasonic response are monitored. Figure taken

from [55].

correlation function in Eq. (3.9). The selection of ε, such that the correlation function

X(ε) = Xmax becomes maximal, eliminates the trivial effects due to dilation and change

of wave speed, caused by the temperature change. According to [54], after correcting

for these trivial effects, the remaining changes (which the authors referred to as “dis-

tortion”) as a function of time is equivalent to the negative logarithm of the “scattering

fidelity”. This “distortion” is defined as:

D(t) = − ln f(t) (3.12)

The result for the chaotic system (i.e. using medium block for the specimen) is shown

in Fig. 3.4. A good agreement is once again seen between the experimental notion of

the scattering fidelity and the theoretical fidelity predicted by LRT in Eq. (2.8).

3.4 Summary

In this chapter, we introduced an experimentally feasible notion of scattering fidelity

which is defined via the experimentally observable scattering matrix. We discussed

how the scattering matrix can be interpreted as an unitary operator thereby allowing

us to extend the notion of the theoretical fidelity. Moreover, in our definition of the
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Figure 3.4: The distortionD(t) for the chaotic system. The thin jagged lines corresponds

to experimental data taken in different frequency ranges and the thick lines show the

theoretical curves according to the LRT predictions (Eq. (2.8)) of fidelity. Figure taken

from [55].

scattering fidelity, we took into consideration absorption phenomena which are present

in experimental systems. Finally, we showcased the experimental results of chaotic

systems where the temporal behavior of the scattering fidelity was shown to match the

theoretical LRT predictions in chaotic systems.
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Anderson Localization

Although fidelity has been studied extensively in the past eight years, the focus of these

research were mainly on wave systems with classical chaotic dynamics. Very little is

known about fidelity in random media exhibiting Anderson Localization - a phenomenon

that results in total halt of transport due to destructive interferences experienced by

waves traveling in a random medium. First predicted by P. W. Anderson in 1957 in the

frame of electron propagation, this phenomenon has now been studied and observed in a

variety of different quantum and classical systems, including condensed-matter [56, 57],

Bose-Einstein condensates in optical lattices [58], sound waves [59] and light [60].

So, what is Anderson localization and what are its basic characteristics? This is the

question that we will address in this chapter. We will present some fundamental ideas

applied in transport theory of random media; which allow us to establish the basic

principles of Anderson localization (with reference from [61]). In section 4.1, we will

introduce the prototype model that describes electron propagation in disordered lattices:

the Anderson tight-binding model. In section 4.1.2, we will introduce the transfer

matrix, a numerical method that allows one to calculate the asymptotic structure of the

eigenmodes of a disordered medium. Next, the effect of one impurity in a translationally

invariant (perfect) potential will be discussed in section 4.1.3. In section 4.1.4, we will

24
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discuss the localization length - a quantity that can be used to quantify the degree

of randomness in the system and the resulting localization phenomena. Next, we will

discuss the Thouless relation that connects the localization length and the density of

states in section 4.1.5. Approximation of localization length for weak disorder values

will be discussed in section 4.1.6. In section 4.2, we will discuss some experimental

observations of Anderson localization. Finally, we will summarize in section 8.3.

4.1 Anderson Localization

The standard model in solid state physics that describes electron transport on a dis-

ordered lattice is the Anderson tight-binding model. This model is dictated by the

following Hamiltonian:

Ĥ =
N∑
n=1

εn|n〉〈n|+ V
N∑
n=1

m=n±1

(|n〉〈m|), (4.1)

where |n〉 is the Wannier basis state that is localized at site n, N is the total number

of sites in the lattice, and V is the tunneling rate from site n to any neighboring site.

The first term in Eq. (4.1) denotes the potential energy of atoms located at the n-th

site of the lattice and is hence known as the on-site potential. The second term denotes

the kinetic energy that arises from the nearest-neighbor interaction. The disorder is

introduced into the system by drawing ε from a random distribution. In the following

discussion, we assume a random box distribution of
[
−w

2 ,
w
2

]
. In its one-dimensional

(1D) version, the Hamiltonian (Eq. (4.1)) takes the following matrix form (in the real
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space representation):

Ĥ =



ε1 V 0 0 · · · 0

V ε2 V 0

0 V ε3 V
...

0 0 V ε4
...

. . .

0 · · · εN


(4.2)

A direct diagonalization of this matrix will yield the corresponding eigenvalues and

eigenvectors of the system.

4.1.1 Periodic Lattice

For a periodic 1-D lattice, where εn = ε for all sites, the tight-binding Hamiltonian

provides a set of N simultaneous equations

V cn+1 + V cn−1 + εcn = Ecn, (4.3)

where cn = 〈n|ψ〉 is the value of the corresponding wavefunction at site n (in the Wannier

basis). Since Bloch’s Theorem applies for periodic potentials, the wavefunctions can be

written in the Bloch form

cn+R = cn exp(ikR) (4.4)

in which k is the wavenumber and R is the periodicity of the lattice (in the case discussed

here R is the distance between sites). This allows us to use the ansatz cn = A exp(inkR)

in Eq. (4.3) to get

E = ε+ 2V cos(kR). (4.5)

Applying hard wall boundary conditions at both ends of the lattice (i.e. c0 = cN+1 = 0),

allows us to find the possible values of k; namely, k = m
(N+1)Rπ, where m = 1, 2, . . . , N .

Finally, the energy values can be written as

E = ε+ 2V cos
(

m

N + 1
π

)
. (4.6)
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This same result can be obtained with the Transfer Matrix method that we will discuss

in the next section.

4.1.2 Transfer Matrix Method

Using direct diagonalization to find eigenvalues and eigenvectors works well for small

systems. However, for large N , this method becomes very inefficient in terms of com-

putation. Thus, we turn to the transfer matrix method for an answer.

The set of simultaneous equations in Eq. (4.3) can be written in the following matrix

form  cn+1

cn

 = Tn

 cn

cn−1

 (4.7)

where Tn is the transfer matrix defined as

Tn ≡

 E − εn −V

V 0

 . (4.8)

Notice that Eq. (4.7) take a recursive form; therefore, once we know the first two

components of the wavefunction for an energy value E, we can find the remaining c′ns

via the following relation  cn+1

cn

 =
n∏
v=1

Tv

 c1

c0

 . (4.9)

Let’s now solve the hard wall boundary problem using this method. In the case of the

periodic potential, the transfer matrix is the same for every n, i.e. Tn = T . As a result,

the above equation becomes cn+1

cn

 =
n∏
v=1

Tv

 c1

c0

 = Tn

 c1

c0

 =

 T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

 c1

c0

 , (4.10)

where T (n)
ij are the matrix elements of Tn. From this equation, we obtain an expression

for cn+1

cn+1 = T
(n)
11 c1 + T

(n)
12 c0. (4.11)
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For a lattice of N sites, the hard wall boundary conditions, c0 = cN+1 = 0, applies.

Therefore, we get

T
(N)
11 c1 = 0. (4.12)

By requesting a non-trivial solution (i.e. c1 6= 0), we conclude that T (N)
11 = 0. Note that

T
(N)
11 is in fact a function of energy E. Our task now is to find this function.

Now, let us assume that α1 and α2 are the eigenvalues of T . Then αN1 and αN2 are

eigenvalues of TN . Also let x̂1 and x̂2 be eigenvectors of TN . Since T is a 2× 2 matrix,

we can write the relation

TN = d1T + d0I =

 (E−εV )d1 + d0 −d1

d1 d0

 , (4.13)

where I is the identity matrix and d0 and d1 are numbers. Acting this matrix on the

eigenvectors yields

TN x̂1 = αN1 x̂1 = (d1T + d0I)x̂1 = (d1α1 + d0)x̂1

TN x̂2 = αN2 x̂2 = (d1T + d0I)x̂2 = (d1α2 + d0)x̂2 (4.14)

from which we obtain the following expressions

αN1 = d1α1 + d0

αN2 = d1α2 + d0. (4.15)

with solutions of the form

d1 =
αN1 − αN2
α1 − α2

d0 =
αN1 α2 − αN2 α1

α2 − α1
(4.16)

Therefore, we can write the product of N transfer matrices TN as a linear combination

of the matrix T itself and the unity matrix. The coefficients of this linear combination

are given by Eq. 4.16 provided that we know the eigenvalues α1 and α2 of the T -matrix.

To find the α′is, we set det(T − Iα) = 0, which gives

α2 − E − ε
k

α+ 1 = 0. (4.17)
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This gives a discriminant of
(
E−ε
k

)2− 4 and α1α2 = 1. Since the periodic lattice follows

Bloch’s Theorem, and x̂′s needs to be extended which implies that the α′s needs to be

complex. The discriminant should therefore be negative, |E−εk | < 2. This allows us to

use the ansatz |E−εk | < 2 cosϕ to find the eigenvalues of T :

α1 = exp(iϕ)

α2 = exp(−iϕ) (4.18)

Applying this result to (4.16) yield

d1 =
sin(Nϕ)

sinϕ

d0 = −sin[(N − 1)ϕ]
sinϕ

. (4.19)

Using this relation along with Eq. (4.12) and Eq. (4.13), we obtain

2 cosϕ
sin(Nϕ)

sinϕ
=

sin[(N1)ϕ]
sinϕ

(4.20)

which leads to

sin[(N + 1)ϕ] = 0 (4.21)

The conditions for ϕ is thus, ϕ = m
N+1π, where m = 1, . . . , N . This yields the same

result for the energy as in Eq. (4.6).

4.1.3 Impurities

In general, lattices often have impurities that arise from many factors such as irregular

spacing in crystals for example. These impurities result in strong deviations from the

periodic behavior.

In order to understand the effect of impurities, we will consider the case of a periodic

lattice with only one impurity. Let’s take the N-site lattice and allow N → ∞. Let’s

take all εn = 0 except where the impurity is located. We will take the location of the
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impurity to be at n = 0 and therefore, ε0 = 0. For simplicity, we will take R = 1 and

V = 1.

Now, instead of using the ansatz for the periodic lattice in Eq. (4.3), we use the ansatz

cn = A exp(γn) and obtain

[exp(γ)]2 − E exp(γ) + 1 = 0 (4.22)

For a periodic lattice, |E| < 2, and the above quadratic equation has a negative dis-

criminant (and complex exp(γ)). Hence we can conclude that the eigenstate associated

with the impurity needs to have |E| > 2 (and real exp(γ)). Applying normalization

condition, we can further assume

cn =

 A exp(−γn) if n > 0

B exp(γn) if n < 0
(4.23)

where γ > 0. Applying this ansatz to Eq. (4.3) for sites n = 1 and n = −1 gives

[E − exp(γ)] exp(γ)(A−B) = 0. (4.24)

which results to exp(γ) = E or A = B. The former is an impossible solution since we

need to have both |E| > 2 and exp(γ) < 1. So the only possible solution is A = B.

Using this and the fact that the wavefunction should match from both negative and

positive values of n, we get c0 = A. Substituting back to Eq. (4.3) at n = 0, we obtain

the following relation for the eigenvalue associated with the localized mode

E = 2 exp(γ) + ε0. (4.25)

Further substitution in Eq. (4.22), gives that

E = ±(ε20 + 4)1/2. (4.26)

Notice that for ε0 = 0 Eq. (4.26) provides the borders of the energy band of the perfect

lattice. It is also important to note that the wavefunction associated with the presence

of the impurity is exponentially localized at the impurity site as seen in Eq. (4.23). A



Chapter 4. Anderson Localization 31

natural expectation therefore is that in the case of more impurities, additional localized

modes (centered at the place where the impurities are located) will emerge. A disordered

system can be created by introducing impurities at each site. In such a system, the

eigenmodes are exponentially localized with centers which are uniform over the entire

lattice.

4.1.4 Localization Length

The degree of localization of a wavefunction can be quantified via its localization length,

defined as

l−1
∞ = − lim

n→∞

1
|n|
〈ln | cn

cn0
|〉, (4.27)

in which 〈· · · 〉 denotes the average over different disorder realizations of the random

potential. The localization length as defined by Eq. (4.27) characterize the asymptotic

(inverse) decay rate of the wavefunctions of our system.

4.1.5 Thouless Relation

We consider Eq. (4.9) and assume that c0 and c1 are known. For the N -site and an

energy value of E, we can solve for cN to find that it is a polynomial of E of degree

N − 1,

cN (E) = A

N−1∏
n=0

(E − En), (4.28)

where A is a constant and En the roots of the polynomial. The above equation can be

expand to

cN (E) = A

N−1∏
n=0

|E − En| exp[iπH(En − E)], (4.29)

in which H(x) is the Heaviside function of x. We define

Λ(E) ≡ lim
N→∞

1
|N |

ln |cN (E)
c0
|, (4.30)
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Substituting Eq. (4.29) in the above equation and taking the limit N → ∞ we ob-

tain

Λ(E) =
1
N

∑
n

ln |E − En|+
iπ

N

∑
n

H(En − E)

≈
∫ +∞

−∞
dE′ρ(E′) ln |E − E′|+ iπ

∫ +∞

−∞
dE′ρ(E′)H(E′ − E) (4.31)

where ρ(E) is the density of states. The second integral can further be expanded

to ∫ +∞

−∞
dE′ρ(E′)H(E′ − E) =

∫ +∞

E
dE′ρ(E′) ≡ I(E), (4.32)

in which I(E) is defined as the integrated density of states; thereby simplifying Eq. (4.31)

into

Λ(E) =
∫ +∞

−∞
dE′ρ(E′) ln |E − E′|+ iπI(E). (4.33)

The integrated density is thus

I(E) = =m[
Λ(E)
π

] (4.34)

making the density of states

ρ(E) = −dI(E)
dE

. (4.35)

Furthermore, since the cn’s are complex numbers, they can be written as cn = |cn| exp(iϕn),

where ϕn represents the phase. Applying this to the definition of Λ(E) gives

Λ(E) = lim
N→∞

1
N

[
ln |cN

c0
|+ i(ϕN − ϕ0)

]
. (4.36)

The real part of this equation is similar to the definition of the localization length of

Eq. (4.27), thereby allowing us to write the localization length in terms of the averaged

density of states

l−1
∞ = <e[Λ(E)] =

∫ +∞

−∞
dE′ρ(E′) ln |E − E′|. (4.37)

This relation is known as Thouless relation and it was first derived by Thouless using a

Green’s function formalism [62].
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4.1.6 Weak Disorder Approximation of Localization Length

For a system with weak disorder, we can use perturbation theory to calculate the re-

sulting localization length as a function of energy and disorder strength. Let us start

by rewriting Eq (4.3) as

cn+1 + cn−1 + λεncn = Ecn, (4.38)

where λ is a small parameter. In terms of the ratio of the wavefunctions, Rn ≡ cn
cn−1

,

the above equation can be expressed as

Rn+1 = (E − λεn)− 1
Rn

; (4.39)

thereby allowing us to express the localization length as

l−1
∞ = lim

N→∞

1
N
〈
N∑
n=1

ln |Rn|〉. (4.40)

In order to determine the localization length, we need the following ansatz for Rn,

Rn = A exp(λBn + λ2Cn + λ3Dn + . . . ), (4.41)

where the coefficients, Bn, Cn, Dn, . . . are independent of λ. Applying this equation

to Eq. (4.39) and use Taylor expansion, we obtain the following set of equations by

equating the powers of λ

λ0 : A = E −A−1 (4.42)

λ1 : ABn+1 = εn −A−1Bn (4.43)

λ2 : A[Cn+1 +
1
2
B2
n+1] = A−1[Cn −

1
2
B2
n] (4.44)

...

Next, we will find these coefficients. Without loss of generality, let us assume that

〈εn〉 = 0 and 〈ε2n〉 = σ2, in which σ2 is the variance of the disorder. Thus, the zero-th

order λ gives us

A =
1
2

[E ±
√
E2 − 4], (4.45)
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which is a constant number and the first order gives us

〈Bn〉 = 0. (4.46)

As shown in the the first order expression, Bn depends on εn−1 and Bn−1, but not on

εn, this holds up to n = 1. Hence, we can write 〈εnBn〉 = 〈εn〉〈Bn〉 = 0 to obtain

〈B2
n〉 =

A2

A4 − 1
σ2, (4.47)

Applying this expression to the second order expression of λ, we get

〈Cn〉 = −1
2

A2

(A2 − 1)2
σ2 (4.48)

Utilizing these results in the expression for the localization length, we obtain

l−1
∞ = lim

N→∞

1
N

N∑
n=1

〈lnA〉+ λ〈Bn〉+ λ2〈Cn〉+ . . . ≈ 1
2

σ2

(4− E2)
. (4.49)

Since the disorder potential is drawn from a box distribution of range [−w
2 ,

w
2 ], it has a

variance of σ2 = w2

12 and therefore, the localization length follows

l∞ = 24
(4− E2)
w2

. (4.50)

Fig. 4.1 compares the results of this approximation with the actual localization lengths

for various values of w and E calculated numerically using the transfer matrix method. A

nice agreement is seen between the numerical and perturbative results for weak disorder

values; while for the stronger values of the disorder, deviations from the theoretical

prediction are obvious. At the same time, there are some noticeable deviations for

energies at the center of the band and the band edges. These deviations were studied in

the past and their origin was related to resonance phenomena associated with rationality

of the wavenumbers to the lattice periodicity [63].

In order to observe localization phenomena, it is required that the system size is larger

than the localization length. Besides this, another characteristic length is the mean

free path lm, which measures the average distance covered by the electron between
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Figure 4.1: Numerical computations of l∞ (solid line) compared with the approximations

of l∞ (dashed line) for: (a) w varied, E = 2 cos(
√
π), (b) w = 1, E varied, (c) w = 3, E

varied, (d) w = 10, E varied. Figure taken from [61] and referenced herein.

subsequent scattering events. For 1D systems, the mean free path is of the order of

the localization length (lm ∼ l1D∞ ) and therefore these systems lacks diffusive behavior.

For quasi-1D systems, l∞ ∼ Mlm, where M is the number of channels. In this case

because lm � l∞, a diffusive behavior is possible. This diffusive behavior is even more

pronounced in 2D systems where l∞ ∝ exp(lm); thereby making it very hard to observe

localization in such systems.

Although the theory of Anderson localization is well developed during the last 50 years,

the experimental observation of the phenomenon, remains an “unsolved” problem. On

the electronic side, Anderson localization is masked by dephasing and electron-electron

and electron-photon interactions. On the other hand, Anderson localization, as we

explained in this chapter, is a wave interference phenomenon. This allows us to extend

its investigation to classical wave systems which are free of the problems appearing

in the electronic framework. Unfortunately even there, it has been very hard (until
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recently) to observe beyond any doubts Anderson localization due to absorption which

results in similar exponential decay of modes. Nevertheless, experimental progress has

allowed us to clearly identify localization in such systems. In the next section we will

review some recent experiments with classical waves (optics and acoustics) and matter

wave systems which confirmed the existence of Anderson localization in the presence of

disorder.

4.2 Experimental Observations of Anderson Localization

Anderson localization is a wave interference phenomenon associated with multiple scat-

tering of waves in random media. As such it can be observed not only in quantum (elec-

tronic) systems, as originally proposed by Anderson but also in acoustic, microwave,

optics and matter wave experimental set-ups. In Fig. 4.2, for example, we report local-

Figure 4.2: Anderson localization in an acoustic system. Inset: An acoustic disordered

system is created by brazing together metal spheres and is places into a water tank.

Main Figure: Acoustic waves are excited by an ultrasonic transducer at one end and

the transmitted intensities are measured by a hydrophone at the other. For a frequency

within the diffusive regime l∞ > N , wave diffusion is seen in the left. Within the

localized regime, l∞ < N , wave localization is observed on the right. Figure taken from

[59].
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ization of ultrasound observed in a three dimensional elastic network. In this experiment,

a disordered system is created by brazing together aluminum beads into a randomly ar-

ranged cylindrical geometry (see inset). The cylinder is then submerged into a tank of

water. A small ultrasonic transducer is placed at one end of the cylinder, and it excites

the media with acoustic wave of a given frequency. At the other end of the sample, a

miniature hydrophone (smaller than the acoustic wavelengths) scans across the sample,

measuring the intensity of the transmitted acoustic wave. The main portion of the sub-

figure shows the scans for different frequencies. On the left, the intensity corresponds

to frequencies within the delocalized regime (l∞ > N), while on the right, the intensity

corresponds to frequencies within the localized regime (l∞ < N). For the frequencies

in the delocalized regime, the acoustic wavefront is observed to diffuse across the trans-

verse directions of the sample. For the frequencies in the localized regime, sharp peaks

are observed in the intensity of the acoustic wavefront, yielding a localized wave; this is

especially apparent if one notes the colormap scaling between the two cases. Because

the observation is seen in the transverse wavefront and the longitudinal length is or-

ders of magnitude larger than the wavelength such an observation is called transverse

localization.

Transverse localization is observed in another experiment [60], in the framework of optics

this time. The set-up is shown in figure 4.3a; it is a 2-D photonic lattices that is periodic

in the two transverse dimensions (x and y) but invariant in the propagation direction

(z). The optical medium is a photorefractive crystal of SBN:60 (Sr0.6Ba0.4Nb2O6).

Disorder is introduced by adding a speckled beam - created by passing a laser beam

through a diffuser - to the interference pattern of the plane waves inducing the lattice.

After forming the disorder lattice, a probe beam is launched into it and the intensity

distribution at the lattice output is imaged onto a CCD camera. When the lattice

is perfectly periodic, the probe beam undergoes “ballistic transport”, manifested by

the symmetric hexagonal intensity pattern shown in Fig. 4.3b. However, for a strong

disorder, localization of the transmitted light is observed in Fig. 4.3c.
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Figure 4.3: Anderson localization in an optical system. a.) An optical hexagonal lattice

is created by optical induction of a laser interference into a SBN:60 photorefractive

crystal. Disorder is controlled by passing one of the inducing lasers through a speckle

plate. An incident laser (the red cylinder) propagates and is imaged by a CCD camera

on the other end of the crystal. b.) An ordered crystal results in diffused light that

shows the hexagonal crystal structure. c.) For stronger disorder, the transmitted light

is localized. The white line represent a logarithm of a horizontal cut through the center,

and clearly displays an exponential envelope (see next section). The color scaling goes

from blue to red, for minimum to maximum. Figure taken from [60].

The third experiment that we will discuss is the direct observation of Anderson localiza-

tion of an atomic Bose-Einstein condensate released into a one-dimensional waveguide

in the presence of a controlled disorder created by laser speckle [58]. In this experiment,

a Bose-Einstein condensate of alkali atoms is formed and trapped at a single site at time

t = 0. The density of atomic density profile is then imaged as shown in Fig. 4.4. At

t > 0, the magnetic trap in the longitudinal (z) direction is turned off, and the BEC is

allowed to expand across the lattice. The density experiences some spreading, but the

majority of the condensate stays localized by the disorder as shown in Fig. 4.4b.

The different nature of the systems discussed above (acoustic, optical and matter waves),

convinced us of the universal character of Anderson localization. Also, it has to be

clear that the technological implications (specifically in the optics framework) of the
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Figure 4.4: Anderson localization in an atomic matter wave system. An optical lattice

is formed by two counter-propagating lasers. Disorder is introduced by passing one laser

through a speckle pattern. A BEC is loaded and trapped at a single site and its density

is measured, upper figure. The magnetic trap is turned off in the z-direction, and the

BEC is allowed to propagate in the lattice. The disorder present in the lattice allows

the density to spread, but keeps majority of the BEC trapped at the initial site. Figure

taken from [58].

phenomenon is tremendous, ranging from random lasers in optics to the manipulation

of wave transport in acoustics (orchestral halls and seminar rooms). It is therefore of

high importance to develop measures/observables which will allow the experimentalist

to measure/quantify the degree of localization of random media and distinguish it from

absorption phenomena. In the following chapters of this Thesis we will propose such

a measure of Anderson localization: The Loschmidt Echo. We will not only develop a

theoretical formalism to evaluate it but we will also describe an experiment that we have

performed which allowed us to establish the validity of our theoretical predictions.
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4.3 Summary

In this chapter, we have reviewed Anderson localization and demonstrated the basic

ideas behind this phenomenon using the tight binding model. Moreover, we discussed

the quantification of this phenomenon via the localization length. We also discussed the

observations of localization in experimental systems such as acoustic waves, BEC, and

photonic systems. Obviously these systems cannot be modeled by the simple Anderson

tight-binding alone; therefore, in the next chapter, we will introduce another model to

study Anderson localization–the Random Matrix Theory (RMT) modeling.
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Random Matrix Theory

Modeling

The central insight of Random Matrix Theory (RMT) modeling is that there is a broad

category of systems, characterized by a certain degree of complexity, that have statis-

tical properties (of various observables) which are indistinguishable from the statistical

properties of ensembles of random matrices of large dimension. This insight was in-

troduced by Wigner while studying the statistical properties of the spectra of complex

nuclei [64, 65] and it was further strengthen by other researchers who found that the

predictions of RMT are universal, i.e. applicable in a variety of systems [49]. This the-

ory was extended significantly by Dyson, Mehta, Porter and others, who focused their

studies on the analysis of the statistical properties of eigenvalues and eigenvectors of

RMT ensembles [66]. In recent years, RMT has become a major theoretical tool in the

studies of quantum/wave chaos, while it has found applications in many areas of physics

ranging from nuclear, atomic and molecular physics to mesoscopic and mathematical

physics [22, 24].

In this chapter, we will explore the historical developments of Random Matrix Theory

41
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and we will give special attention to a category of Random Matrices, termed Banded

Random Matrices (BRM) which are applicable to describe disordered media with Ander-

son localization. This chapter is organized as follows: in section 5.1, we will introduce

the Random Matrix Theory (RMT) and its success in modeling chaotic systems. In

section 5.2, we will discuss the need for Banded Random Matrices (BRM) while their

properties will be presented in section 5.3. The scaling theory of localization, which

allows us to quantify the change in the structure of wavefunctions of BRM’s as localiza-

tion phenomena dominate the transport, will be discuss in section 5.3.1. In section 5.4,

we will discuss the statistical properties of the levels, focusing our analysis on the level

velocity distribution. Finally, we will summarize in section 8.3.

5.1 Random Matrix Theory

The birth of Random Matrix Theory (RMT) was based on the need to provide a phe-

nomenological model to describe complex systems whose Hamiltonians are either un-

known or too complicated to be derived. In the words of Dyson [67],

What is here required is a new kind of statistical mechanics, in which we

renounce exact knowledge not of the state of the system but of the system

itself. We can picture a complex nucleus as a “black box” in which a large

number of particles are interacting according to unknown laws. The problem

is then to define in a mathematically precise way an ensemble of systems in

which all possible laws of interaction are equally possible.

RMT was able to propose such type of ensembles that capture the essential physics

using minimum information about the Hamiltonian itself.

In a series of papers published by Dyson [67–71], he established the mathematical foun-

dations of RMT and introduced the classification of random matrix ensembles according

to their variance/invariance properties under time reversal with/without spin-1/2 inter-
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action. These classifications are the three commonly known Gaussian ensembles: the

Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), and

the Gaussian Sympletic Ensemble (GSE). 1

One of the beauty of RMT and the reason for its success is universality: regardless of

the microscopic details of a generic quantum system within a given classification, RMT

is able to provide a universal prediction for certain statistical properties of the spectra.

For example, RMT was able to correctly predict the distribution of energy level spacings

of complex systems

Sn =
En+1 − En

∆
, (5.1)

where En’s corresponds to the ordered eigenvalues and ∆ is the mean level spac-

ing.

However, since the development of Random Matrix Theory, its main focus has been on

the statistical properties of “full” random matrices, where all of the matrix elements are

independent and distributed in the same manner. Physically, these matrices correspond

to extremely complex systems such as heavy nuclei, atoms, metallic clusters, etc. [73].

These matrices can be used to describe local statistical properties of spectra and eigen-

states in a certain range of energy, typically, in the semiclassical region.2 For chaotic

systems, the level spacing distribution for the three classification of RMT ensembles

derived in [8] is as follow:

P (S) ∝


S1e−

π
4
S2
, GOE

S2e−
4
π
S2
, GUE

S4e−
64
9π
S2
, GSE

(5.2)

1Later on the number of relevant ensembles was further expanded to describe scattering systems (in

complete analogy we have the Circular Orthogonal, Circular Unitary and Circular Symplectic ensem-

bles), while even more recently Zinbauer introduce four more ensembles [72].
2 For integrable systems, it has been shown in [74] that the energy level spacing distribution, P (S),

follows a Poisson distribution.
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However, full random matrices are unable to provide insights on both the energy spectra

and eigenstates of systems that exhibit Anderson localization. Thus, a new ensemble of

Random Matrices has been introduced, coined Banded Random Matrices (BRM).

5.2 Banded Random Matrices

Banded Random Matrices are characterized by the bandwidth of the Hamiltonian, b,

and were introduced in order to describe localization in a phenomenological way. The

band-like structures of these matrices are related to the finite range of interactions (due

to localization) in a given basis. Examples of such matrices are illustrated in Fig. 5.1

and Fig. 5.2.

BRMs were introduced by Wigner in 1955. A simple type of BRM can be given by

symmetric matrices Hnm with zero elements outside the band (|n − m| > b), while

inside the band(|n −m| ≤ b), the matrix elements, Hnm, are random and statistically

independent with 〈Hnm〉 = 0 and a variance

〈H2
nm〉 = σ2. (5.3)

Unlike the full random matrices where an analytical treatment is available, the lack

of rotational invariance of BRM ensembles makes it nearly impossible to understand

BRM without computational aid. For example, it was first numerically shown in [75]

and later analytically proved in Ref. [76] that the density of states, ρ(E), for infinite

BRM(N →∞) obeys the following semicircle law:

ρ(E) =

 1
4πσ2b

√
8bσ2 − E2; |E| ≤ R0 = σ

√
8b.

0; |E| > R0

(5.4)

Other, more complicated (than the density of states) observables, were also first studied

numerically before analytical results were available for them. In all these studies, the
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Figure 5.1: Banded Random Matrix,

N=1000, b=750. The blue regions corre-

spond to the matrix elements of the value

zero. The colored region corresponds to the

elements within the bandwidth, b, with a

Gaussian distribution. Different colors rep-

resent different values of the elements. Fig-

ure taken from [9] and referenced herein.

Figure 5.2: Banded Random Matrix,

N=1000, b=10. The blue regions corre-

spond to the matrix elements of the value

zero. The colored region corresponds to the

elements within the bandwidth, b, with a

Gaussian distribution. Different colors rep-

resent different values of the elements. Fig-

ure taken from [9] and referenced herein.

guidance that the numerical simulations provided to the theoretical investigations was

exceptionally crucial.

5.3 Properties of BRM

Initially, random matrix theory was considered as an abstract mathematical theory

without actual physical applications. It was the study of quantum chaos and the as-

sociated phenomena of dynamical localization that revived the attention to RMT’s as

phenomenological models that can explain the behavior of physical systems. This inter-

est was boosted further by Efetov’s work on supersymmetry and its application to the
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theory of small metallic particles and to Anderson localization [77]. Specifically, Efetov

introduced a link between BRM and localization theory that allowed us to study the

localization properties of disordered systems in a better way.

The limiting case of BRM where b = N
2 corresponds to the standard Gaussian orthogonal

ensemble (GOE) while the case b = 1 corresponds to a 1D Anderson tight-binding model,

which is known to exhibit localization phenomena [78]. For a band-width b, different

from the above two limiting cases, BRM can be used to describe quasi-1D disordered

systems (like thick disordered wires). In this framework, the parameter b corresponds to

the number of transverse channels in the system [76] and thus controls its localization

properties. The size, N , of the matrix is then associated with the longitudinal size of

the system.

Studies of BRM showed that in the limit of N → ∞, all eigenstates ϕE(n) are expo-

nentially localized around a certain central site n0

|ϕE(n)| ∼ exp(−|n− n0|
l∞(E)

); n→ ±∞ (5.5)

The quantity, l∞, is the so-called localization length which measures the spread of a

specific eigenmode in space. The localization length was found in [73] to be

l∞(E) =
2
3
π2ρ2(E)b2 (5.6)

where ρ is the density of states defined in Eq. (5.4).

5.3.1 Scaling Theory of Localization

Since everything is finite (including the system one studies), we need to take into con-

sideration one more parameter - the system size N . For a finite N -dimensional BRM,

it was found that there is a scaling parameter, Λ = b2

N , that governs the behavior of

the spectra and the eigenstates of such systems [75]. For Λ� 1, the BRM eigenvectors

reveal a diffusive behavior, i.e. they are extended throughout the system as illustrated
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in Fig. 5.3. In addition, their properties are very similar to those of the standard RMT.

On the other hand, for Λ � 1, the BRM eigenvectors reveal a localized behavior, i.e.

they decay exponentially around a certain central site as illustrated in Fig. 5.4 (see also

Eq. 5.5 above). The question is, how can we quantify this localization behavior and

more importantly, how can we describe the transition in the structure of eigenvectors,

as the scaling parameter Λ changes?

Figure 5.3: Eigenstate structures corre-

sponding to Banded Random Matrix of

N=1000, b=750. Figure taken from [9].

Figure 5.4: Eigenstate structures corre-

sponding to Banded Random Matrix of

N=1000, b=10. Figure taken from [9].

Unlike the simpler case of infinite samples, the meaning of localization length for fi-

nite samples is not clear. Below, we follow the approach developed in the theory of

quasi-1D disordered solids which is based on the evaluation of the so-called information

lengths. One of the commonly used quantities in this approach in the so-called entropic

localization length, defined through the information entropy H of eigenstates:

H(ϕE(1), . . . , ϕE(N)) = −
N∑
n=1

ϕE(n)2 lnϕE(n)2;
N∑
n=1

ϕE(n)2 = 1 (5.7)

where ϕE(n) is the n-th component of an eigenstate in a given finite basis. The entropic

localization length, lH, is then defined as

l
(1)
H = N exp(〈H〉 −HGOE) (5.8)
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where 〈. . . 〉 is an ensemble average over eigenstates within a small energy window (i.e.

eigenstates that have the same statistical properties) and over a number of different

matrices of the ensemble and HGOE is the averaged value of the entropy of a GOE

eigenvector (extended ergodically over the whole system) . It was analytically derived

in [75] to be:

HGOE = Ψ(
N

2
+ 1)−Ψ(

3
2

) ≈ ln(
N

2.07
) (5.9)

in which Ψ is a digamma function. From Eq. (5.9) one can see that for N � 1,

the entropic localization length of random eigenstates, exp(HGOE), is approximately

N/2.07; this result is due to Gaussian fluctuations in the components ϕE(n) [79].

Note that in the limiting case of an exponentially localized state with ϕE(n) = l
−1/2
∞ exp(−|n−

n0|/l∞), the quantity lH is proportional to l∞; while in the opposite case of completely

extended states ϕE(n) ∼ N−1/2, we get that l(1)
H ∼ exp(H). Thus, it is obvious that the

entropic localization length, lH, varies from 0 to N depending on the degree of local-

ization. Moreover, it was numerically found in [75] that l(1)
H scales with the parameter,

Λ = b2

N , as follows:

β =
l
(1)
H
N

=
c1Λ

1 + c1Λ
(5.10)

where c1 is just a scaling parameter and is estimated to be 1.4. This β-function quantifies

the localization phenomenon. This relation is plotted in Fig. 5.5. To better visualize the

scaling, Fig. 5.5 was plotted in a double log manner (as shown in Fig. 5.6) by referring

to the variable y, defined as

y =
β

1− β
. (5.11)

The scaling matched the numerical data very well up to about Λ ≈ 10. This is due to

the fact that at values Λ� 1, the scaling curve becomes increasingly difficult because of

the small denominators in Eq. (5.11), and requires larger and larger matrices. Moreover,

when b approaches N/2 the band structure is lost and the computed localization lengths

deviate from the scaling line. However, the figure clearly indicate that the scaling

behavior continues to hold.
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Figure 5.5: The scaled localization length β

Vs. x = b2

N for different system sizes.The

dashed line is given by Eq. (5.10). In this

figure, x corresponds to our Λ. Figure taken

from [75].

Figure 5.6: A double log plot of the data

of Fig. 5.5, where y = β
1−β . The dashed

line is given by y ≈ 1.4x. Once again x

corresponds to our Λ. Figure taken from

[75].

Another measure of localization, often used in solid state physics, is a quantity known

as the Inverse Participation Number (IPN). For a lattice model, this quantity is defined

as

P2 =
N∑
n=1

|ψn|4, (5.12)

where ψn is the eigenfunction amplitude at site n. We note that in the case of extended

states (i.e. ψn ∼ 1√
N

), we have P2 = 1/N while in the case of localized modes (i.e.

ψn ∼ 1√
l∞

exp(− n
l∞

)), we get P2 ∼ 1/l∞. In other words, the IPN defines the inverse

of the volume over which a mode is extended. By normalizing this localization length

with reference to the corresponding GOE result, one introduces the quantity, β2 (in a

similar spirit as for the entropic length above):

β2 ≡
l
(2)
H
N

=
(
〈P2〉

P2(GOE)

)−1

=
3/N
〈P2〉

, (5.13)
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where P2(GOE) is the participation ratio for GOE random matrices which in the limit

of large sizes scales as 3/N [80]. The quantity, β2, for the standard BRM was found [81]

to scale in the same way as β, i.e.

β2 =
c2Λ

1 + c2Λ
(5.14)

where, the parameter c2 depends on the shape of the envelope function for the variance

of matrix elements. In a similar manner that y was introduced, y2, is also defined in

terms of β2 as:

y2 =
β2

1− β2
(5.15)

The scaling of β2 with respect to Λ is illustrated in Fig. 5.7.

Figure 5.7: Scaling behavior of lH for standard BRM. ln
(
y2 = β2

1−β2

)
is plotted Vs. λ.

In this case λ = Λ. Figure taken from [80].
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5.4 Level Velocity Distribution

We have discussed previously the signature of Anderson localization in the frame of

wavefunction structures. However, Anderson localization shows its traces in other sta-

tistical measures as well. One such quantity is associated with the sensitivity of energy

levels to small perturbations induced to the system by some external parameter x.

Physically, this parameter can be viewed as an external magnetic field, the strength of

a scattering potential for a disordered metal, a deformation of the confining potential

for quantum billiards, or any other parameter that the Hamiltonian depends on. Two

experimental systems representing such type of Hamiltonian are illustrated in Fig. 5.8

with their corresponding parametric level evolution shown in Fig. 5.9.

Figure 5.8: Left: Sketch of the quarter Sinai billiard. In this set-up, a shift in the wall

serves as the perturbation. Right: Sketch of the rectangular billiard with randomly

distributed scatterers. In this set-up, perturbation is introduced in the system through

shifting of the big white disk. Figure taken from [82].

Studies have shown that there is a high degree of universality in a “level response” of

a generic chaotic system to an external perturbation [83]. Specifically, if we consider a

parametric random matrix of the following form:

H(x) = H1 cos(x) +H2 sin(x) (5.16)
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Figure 5.9: Example of the eigenvalue level dynamics spectra for: (left) the quarter Sinai

billiard as a function of the length and (right) the rectangular billiard with randomly

distributed scatterers as a function of the position of one scatterer. Figure taken from

[82].

where both matrices, H1 and H2, are taken from the same ensemble of hermitian BRM’s.

Since the spectral properties of H are independent of x, the dynamics of the eigenvalues

as a function of x can be viewed as the dynamics of interacting particles with x playing

the role of time and En being the position of the particles [84]. Thus, the slope of the

levels is what is known as the “level velocity”.

Distributions of the level velocities, P (ν), has been studied in Ref. [83, 84]. For the

level dynamics of a diffusive system (modeled by a GOE matrix), one can use first order

perturbation theory and find the level velocity distribution. For a small perturbation,

the Taylor expansion of Sine and Cosine functions can be used to approximate the above

matrix model (Eq. (5.16)) to the following form:

H(x) = H1 + xH2 (5.17)

In this respect, the modes of the unperturbed system, corresponding to x = 0, are

defined by the eigenvector problem

H1|n(0)〉 = E(0)
n |n(0)〉 (5.18)
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Applying first order perturbation theory, we obtain the following expression for the first

order correction to the energy levels of H(x):

E(1)
n = 〈n(0)|H2|n(0)〉 (5.19)

Therefore, the derivative dEn/dx is equal to the diagonal element of matrix H2 writ-

ten in the basis of H1. Since both matrices are drawn independently from the same

GOE ensemble, the matrix elements of H2, written in any basis, are Gaussian random

numbers, which lead to a Gaussian distribution of the level velocity [84].

In the localized case, Fyodorov [83] analytically derived the following expression for the

level velocity distribution:

P (w) =
π

6
πw coth(πw/

√
6)−

√
6

sinh2(πw/
√

6)
(5.20)

where w = ν/σν is the rescaled velocity and σν is variance of the level velocity. Within

the localized limit, σν is equivalent to the root of the IPN; the later being inversely

proportional to the localization length. Thus we have, σν =
√
P2 = 1

b . The behavior

of the level velocity, P (w), for the localized and the delocalized cases are graphed in

Fig. 5.10.

5.5 Summary

In summary, we reviewed the statistical properties of the modes of BRM’s which are

considered the appropriate RMT ensemble that describes localization phenomena ex-

hibited in random media. More specifically, we have reviewed the scaling behavior of

the so-called entropic lengths, and also the statistical properties of the level velocities.

In the next chapter, we will use these properties to help us determine localization in the

system that we study.
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Figure 5.10: Level velocity distribution in a log-linear scale for real symmetric matri-

ces. The thick line corresponds to the localized regime (Eq. (5.20)) and the thin line

corresponds to the delocalized regime (Gaussian). Figure taken from [84].



Chapter 6

Fidelity as a probe for Anderson

Localization-Theoretical

Modeling

In this chapter we investigate theoretically the wave interference phenomenon of Ander-

son localization by analyzing the fidelity of quasi-one dimensional (1D) random media

under small perturbations. Our approach is based on the BRM modeling that has

shown to effectively model systems with Anderson localization. Our study reveals a

novel fidelity decay within the standard perturbative regime that clearly differs from

the Gaussian decay expected for diffusive systems. This novel temporal behavior is

characterized by the inverse participation number of the modes of the system, thus

allowing us to probe Anderson localization via fidelity studies.

The structure of this chapter is as follows: In section 6.1, we will discuss fidelity in the

framework of BRM. Within this framework, we will derive a general expression for the

fidelity amplitude in section 6.1.1. In section 6.1.2, we will introduce the concept of

the Local Density of States which will allow us to evaluate the temporal behavior of

55
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fidelity using another pathway. Then we will show how one can apply these knowledge

to understand fidelity in the case of diffusion (section 6.2.1) as well as localization

(section 6.2.1). Once again, we will differentiate between the standard perturbative

regime in section 6.2.1 and the Wigner (FGR) regime in section 6.2.2. We will summarize

in section 8.3.

6.1 Fidelity in the framework of BRM

On a formal level the fidelity is defined as the correlation of an evolved initial state with

two different Hamiltonians i.e.

F (t) = |f(t)|2 = |〈ψ0| exp(iH2t) exp(−iH1t)|ψ0〉|2, (6.1)

where, f(t) is the fidelity amplitude and ψ0 is an initial state (for an extensive discussion

see Chapter 2). H1 is an unperturbed Hamiltonian and H2 = H1 +xB is the perturbed

Hamiltonian. In the framework of chaotic systems, both H1 and B are modeled by GOE

matrices.

Despite the enormous interest on the study of fidelity in the frame of various physical set-

ups, its temporal behavior, for systems showing Anderson localization, was left totally

unexplored. This is surprising, taken the fact that Anderson localization is a broad

phenomenon appearing in a variety of systems as we have already demonstrated in the

previous chapters. One of the main motivation of this thesis and the subsequent novelty

of our results relies on the assumption that one can in fact use the fidelity decay as an

observable that will reflect the localization properties of disordered media.

The first challenge that we have to address is the correct modeling of the Hamiltonians

involved in the definition of fidelity in Eq. (6.1). From the discussion presented in the

previous chapter, we already know that BRM’s can model the statistical properties of

random media and also interpolate between diffusive and localized behavior depending

on the ratio Λ = b2/N (where n is the band-width and N is the rank of the matrix).
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Our analysis of the fidelity via BRM’s is presented in the following sections. As usual,

we distinguish between the standard perturbative and the FGR regime associated with

small and moderate perturbation strengths respectively.

6.1.1 Fidelity Amplitude

Let us first consider the eigenvalues and eigenvectors associated with H1 and H2:

H1|n(0)〉 = E0
n|n(0)〉; H2|mx〉 = Exm|mx〉 (6.2)

The fidelity amplitude appearing in Eq. (6.1) can then be written as:

f(t) =
∑
n,m

〈mx|ψ0〉〈ψ0|n(0)〉〈n(0)|mx〉 exp(iωmnt) (6.3)

where ωmn = Exm−E
(0)
n

~ . Expanding the coefficient in the unperturbed basis by the term

ck = 〈ψ0|k(0)〉 and applying a second completeness where appropriate, we obtain the

following expression for the fidelity amplitude

f(t) =
∑
n,m,k

c∗nck〈mx|k(0)〉〈n(0)|mx〉 exp(iωmnt) (6.4)

By defining the kernel Tnm = 〈n(0)|mx〉, we can rewrite the fidelity amplitude as

f(t) =
∑
n,m,k

c∗nckT
∗
mkTnm exp(iωmnt), (6.5)

A disorder average in Eq. (6.5) results in the following expression:

〈f(t)〉 =

〈∑
n,m,k

c∗nckT
∗
mkTnm exp(iωmnt)

〉
≈
∑
n,m,k

〈c∗nck〉〈T ∗mkTnm〉〈exp(iωmnt)〉. (6.6)

Above we have distributed the average based on the RMT conjecture that eigenstates

and eigenenergies of a random matrix are statistically uncorrelated. This approximation

allows us to further simplify our expression for the fidelity amplitude. Specifically, the
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ensemble average over the expansion coefficient, 〈c∗nck〉, (derived in the Appendix B)

yields the following δ-function

〈c∗nck〉 ≈
δn,k
l∞

∑
j≤l∞

|ψ0,j |2 ≈ σδn,k, (6.7)

where σ = l−1
∞
∑

j≤l∞ |ψ0,j |2. Substituting this back into the expression for the average

fidelity amplitude, we obtain

〈f(t)〉 ≈ σ
∑
n,m

〈|Tmn|2〉 exp(iωmnt). (6.8)

We therefore conclude that the fidelity amplitude is the Fourier transform of the kernel

Pnm ≡ |Tnm|2. The latter is known in the literature [85–88] as the Local Density of

States (LDoS) and its properties will be discussed in the next subsection.

6.1.2 Local Density of States (LDoS) Analysis: Some basic facts

A very useful way of determining the various perturbation borders is via the parametric

analysis of the Local Density of States (LDoS) [9]. This quantity addresses the question:

“How does a known unperturbed state couple and spread out into the perturbed basis?”

The LDoS is formally defined as

P (E|n) =
∑
m

Pnmδ(E − Em) (6.9)

in which the kernel is

Pnm = |〈mx|n(0)〉|2 (6.10)

Averaging the kernel over a small energy window of unperturbed states gives the quan-

tum LDoS lineshape

P (r) = 〈Pnm〉E (6.11)

The classical counterpart to this lineshape (whenever the corresponding Hamiltonian

has a classical limit) is found by the following phase space integral

Pcl(E) =
∫
dqdpρm(p.q)ρn(p, q) (6.12)
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where ρm and ρn are the Wigner functions of the states |n(0)〉 and |mx〉. The shape

of P (r) under various perturbation strengths will dictate the three parametric regimes:

standard perturbative for very small perturbations, x < xc; Wigner (FGR) for moderate

perturbations, xc < x < xprt, and nonperturbative for large quantum-mechanically (but

still small classically) perturbations, x > xprt. The various limits of these regimes, xc

and xprt, will be discussed below.

For small perturbations, we can apply first-order perturbation theory (FOPT) to get

the following perturbed state

|mx〉 ≈ |m(0)〉+ x
∑
k 6=m
|k(0)〉 Bmk

E
(0)
m − E(0)

k

(6.13)

Inserting the above expression into the definitions of the LDoS (Eq. (6.10)) yields

Tnm ≈ 〈n(0)|m(0)〉+ x
∑
k 6=m
〈n(0)|k(0)〉 Bmk

E
(0)
m − E(0)

k

(6.14)

Therefore, the LDoS kernel, to the first order, is

Pnm = |Tnm|2 ≈ PFOPT =

 1; n = m

x2|Bnm|2

|E(0)
n −E

(0)
m |2

; n 6= m
(6.15)

Notice that the above approximation only holds for weak perturbations, where the only

levels that mix are the ones that are separated within the mean level spacing (shown

in Fig. 6.1 left). Within this regime, the majority of the LDoS is contained within the

initial unperturbed level. Imposing such requirement, one obtains a threshold on the

perturbation strength

1 ≈
x2σ2

B

∆2
→ xc ∼

∆
σB

(6.16)

where σ2
B = 〈|Bnm|2〉 is the variance of B̂ and ∆ is the mean level spacing of the

unperturbed Hamiltonian.

As the perturbation strength increases, the levels begin to mix beyond the mean level

spacing as shown in Fig. 6.1 middle. In this case, two regions are developed in the

LDoS [86]. One is a core region that contains the majority of the LDoS and it is defined
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by a half-width, Γ. Another region is the small tails outside of the core. The width,

Γ, can be estimated using perturbation theory to infinite order as was done in [86].

Therefore, one can write the following expression for the LDoS kernel:

Pnm ≈ PPRT =
x2|Bnm|2

Γ2 + |E(0)
n − E(0)

m |2
(6.17)

where Γ is evaluated by imposing a normalization of PPRT. In general, it was found [85–

88] that Γ follows a Fermi-Golden-Rule behavior, i.e. Γ ∼ x2σ2
B/∆. Obviously, for Γ�

∆ the (infinite-order) LDoS profile PPRT reduces to the standard first-order perturbation

theory expression PFOPT in Eq. (6.15).

The LDoS approximated by PPRT fails when Γ reaches the bandwidth ∆b � ∆, where

∆b = b∆. At that point, the two separate core-tail regions merge as shown in Fig. 6.1

right. Equating the two relevant energy scales Γ ∼ ∆b, we get

x2σ2
B

∆
= ∆b → xprt ∼

√
b∆
σB

. (6.18)

Knowing the shape of the LDoS in the various perturbation regimes will allow us to

evaluate the fidelity amplitude of Eq. (6.8) in the next step

Figure 6.1: A sketch of the LDoS profile in the 3 different regimes. The left figure is

the LDoS for the standard perturbative regime, x < xc, where only states within a

mean level spacing are occupied. The middle figure is the LDoS for the FGR regime,

xc < x < xprt, where most of the occupied states are in the core region instead of the

tail region. The right figure is the LDoS for the nonperturbative regime, x > xprt. In

this case, the core and tail region starts to merge. Figure taken from [9].
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6.2 Fidelity - Theoretical Results

From the fidelity expression of Eq. (6.8), it is clear that the fidelity amplitude can be

approximated as the Fourier transform of the LDoS:

〈f(t)〉 ≈
∑
n,m

〈Pnm〉 exp(iωmnt). (6.19)

This leads us to the conclusion that the theory of fidelity is tightly connected with the

theory of LDoS. The latter was developed by Wigner in the frame of traditional RMT

models, while more recently Kottos and Cohen [85–89] have developed a complete theory

of LDoS for chaotic/complex systems. The main points of this theory were highlighted

in the previous section. In the following subsections, we will make use of these results

in order to evaluate the expression Eq. (6.19) for various cases associated with the

perturbation strength x. Our presentation will based on our recent publications in

Refs. [3, 4].

6.2.1 The Perturbative Regime

Recall that for small perturbations (x� ∆/σ), the only energy levels that mix are the

ones that are separated within the mean level spacing. Therefore, from the first-order

perturbation theory (FOPT) expression (Eq. (6.15)), we can approximate the LDoS as

a δ-function. We compared the FOPT approximation with our numerical result from

the BRM model, for the LDoS kernel for Λ = 0.1, x = .001 and mean level spacing,

∆ ≈ 1. This comparison is shown in Fig. 6.2 and we observed a good match between

the numerical LDoS kernel and the LDoS kernel approximated by the FOPT. With

the delta-like approximation of the LDoS kernel, the fidelity amplitude in Eq. (6.19)

yields

f(τ = t/~) ≈
∑
n

〈exp(i(Exn − E(0)
n )τ)〉. (6.20)
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Figure 6.2: LDoS kernel Pnm for N = 1000, b = 10, x = .001. The black line corresponds

to the numerical LDoS kernel. The grey line is the FOPT approximation. The mean

level spacing ∆ ≈ 1. Figure taken from [4].

Rewriting this expression in terms of the level velocity, νn = (Exn−E
(0)
n )/x and turning

the sum from the above equation into an integral over the level velocities, we get:

f(τ̃ = xτ) ≈
∫ ∞

0
P (ν)dν exp(iντ̃). (6.21)

The above expression tells us that the fidelity amplitude is the Fourier transform over

the level velocity probability distribution function, P (ν), in the standard perturbative

regime, x < xc. Obviously, the result will depend on the localization parameter Λ.

Below we will present the two cases of Λ > 1 and Λ < 1 separately.

Diffusion (Λ� 1)

In the diffusive regime, the level velocity was shown in the previous chapter to be

Gaussian. Since the Fourier transform of a Gaussian is still a Gaussian, our approach

leads us to the conclusion that in the diffusive regime, the fidelity will decay in a similar

fashion as the one found for chaotic systems i.e. Eq. (2.8).
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Localization (Λ� 1)

In the localized case, H1 and B are modeled by BRM’s of bandwidth b ≤
√
N . Their

velocity distribution has been shown in the previous chapter to take the following

form:

P (w) =
π

6
coth(πw/

√
6)−

√
6

sinh2(πw/
√

6)
(6.22)

where w = ν/σν is the variance-rescaled level velocity. Taking the Fourier transform of

Eq. (6.22) gives us the following expression for the fidelity amplitude:

f(t) = (αt)2csch(αt), α = x
√

1.5P2 (6.23)

To verify these analytical results, we calculated the fidelity numerically and fitted them

to Eqs. (2.8) and (6.23). This is shown in Fig. 6.3. From this figure we clearly see

that our analytically derived novel decay of the fidelity provides a better fit for the

numerical data than the predictions of the full band (GOE) Gaussian decay of Eq. (2.8).

For multiple such fittings, we extracted the fitting parameter, α, and plotted against

the square-root of the IPN,
√
P2, which we have found from the eigenstates of H2.

This relationship is reported in the inset of Fig. 6.3 and gives further confidence in our

analytical result of Eq. (6.23).

6.2.2 The Fermi Golden Rule Regime

In the case of moderate perturbations, i.e. ∆/σ < x <
√
b∆/σ, the LDoS kernel takes

the Lorentzian form of Eq. (6.17), where Γ � ∆. Both the numerical results and its

theoretical predictions are plotted in Fig. 6.4. From this figure, we observed a good

match between the numerical and theoretical LDoS. Next, we substituted the LDoS

kernel of Eq. (6.17) into the expression for the fidelity amplitude (6.19). Since the

Fourier transform of a Lorentzian is an exponential, we get the following expression for

the fidelity amplitude:

〈f(τ̃ = t/~)〉 ∼ exp(−Γτ̃), (6.24)
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Figure 6.3: Main: The dots corresponds to the numerical fidelity from Eq. (6.5) in the

standard perturbative regime where x = 0.001 and Λ = 0.0018 � 1. The solid line is

the best fit from Eq. (6.23) and the dashed line is the best fit from Eq. (2.8). Notice

that the fit from Eq. (6.23) provides a better fit; thereby confirming our analytical

results. Inset: The variance, σν is extracted from the fitting parameter, α, for different

localization parameters plotted against
√
P2, calculated directly from the eigenstates.

This figure confirmed the linear behavior σν ∼
√
P2 for localized eigenstates. Figure

taken from [4] and referenced herein.

where τ̃ = ∆t/~ = t/tH , in which tH is the Heisenberg time. In the FGR regime, we

are observing an exponential decay of fidelity for the localized case just like the decay

for the diffusive case. We have plotted this result in Fig. 6.5. To get further confidence,

we extracted the Lorentzian width, Γ, and plotted it versus the perturbation strength

x. According to our earlier analysis (see Eq. (6.17) and discussion around it), Γ ∼ x2,

which is in perfect agreement with the numerical data reported in the inset of Fig. 6.5.
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Figure 6.4: LDoS kernel Pnm in the Wigner Regime for Λ = 0.1 and x = 0.1. The

black line corresponds to the numerical LDoS kernel and the grey line is the theoretical

result of Eq. (6.17). The core width of these figures are Γ and the mean level spacing,

∆ ≈ 1. Figure taken from [4] and referenced herein.

6.2.3 Summary

We utilized BRM’s as a model to study both diffusive (Λ � 1) and localized (Λ � 1)

random media. We have found that for small perturbations (i.e. perturbation strengths

such that only nearby levels mix) the fidelity decay in the localized regime is different

from the one in the diffusive regime. For moderate perturbations, we obtained the usual

exponential decay described by the Fermi’s Golden Rule irrespective of the value of the

parameter Λ. Our analytical results were verified by detailed numerical simulations.

Of course, the success (or not) of our theoretical modeling (and of the approximations

involved in the calculations) could only be confirmed via a direct comparison of our

predictions with actual experimental measurements. This comparison, and the corre-

sponding experimental set-up will be discussed in the following chapter.
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Figure 6.5: Main: The numerical fidelity from Eq. (6.5) for x = 0.1 (FGR regime) is

plotted for a localization parameter of Λ = 0.1 (solid line). The dashed line is a best

fit to Eq. (6.24). The fit is offset slightly to the left of its range for clarity. Inset: We

numerically verify the relation Γ ∼ x2 for the FGR regime in the localized regime. The

dashed line shows the boundary between standard perturbative and FGR regimes, at

which point Γ ∼ ∆. The dash-dotted line reveals the Γ ∼ x2 dependence. The single

black dot shows the value of Γ for the decay plotted in the main figure. Figure taken

from [4] with the parameters renamed.



Chapter 7

Fidelity as a probe for Anderson

Localization-Experimental

Results

In this chapter, we will test the theoretical results of fidelity decay in disordered media

(derived in the Chapter 6) with experimental measurements performed in disordered

microwave cavities. This comparison can be made via the notion of scattering fidelity,

which we have discussed in Chapter 3.

The structure of the chapter is as follow: we will introduce the experimental set up of the

disordered microwave cavity in section 7.1. In section 7.2, we will discuss the characteri-

zation of the frequency windows for diffusive and localized modes. In section 7.3, we will

present the experimental measurements of fidelity for both the diffusive (section 7.3.1)

and localized (sections 7.3.2 and 7.3.3) regimes and compare to the theoretical results

of the previous chapter. Our conclusions will be given at the last section.

67
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7.1 Experimental Setup

Our quasi-1D experimental setup for measuring the scattering fidelity is shown in

Fig. 7.1. It is a brass rectangular waveguide with brass bars at two ends closing the

waveguide, with dimensions of 8 mm height, 10 cm width, and 100 cm length. One of

the short wall-length is allowed to move, and a shift in the wall acts as a global pertur-

bation. The cavity is randomly filled with 186 brass cylinders, each with a radius of 5

mm. Because of the reflection at the transverse boundaries, the microwave TE modes

excited in the cavity are transverse. The wavelengths are such that the cylinders can

be treated as point scatters. In the studied frequency range, only TEn,0 modes can be

excited, so the cavity can be considered as quasi-one-dimensional. As shown in Fig. 7.1,

two microwave antennae are coupled into the cavity, one close to the perturbing wall

and the other deep within the scattering bulk. The antennae are connected to an Agi-

lent 8720ES VNA, which sends out microwaves in the frequency range of 3-12 GHz at a

100 kHz resolution. The VNA then measures the S-matrix elements Sab(E) which are

recorded. The perturbation is applied via a position shift of the movable wall, in incre-

ments of δw = 0.2 mm, up to a maximum wall shift of w = 18.0 mm. The perturbed

S-matrix elements are also recorded. For a given perturbation, the recorded S-matrix

elements are applied to the scattering fidelity formula. An ensemble average over 15

realizations of scatterer positions is then performed.

7.2 Signature of Localization

The next step is to determine the diffusive and the localized frequency window. In

order to address localization in absorptive systems, the relative size of transmissive

fluctuations was used in [90] to find the signatures of localization within a quasi-1D

microwave waveguide with randomly distributed dielectric or metallic spheres. The

relative size of the transmissive fluctuations is captured by the variance, σ2
T̃

of the mean
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Figure 7.1: Experimental set-up: Photograph of the experimental microwave cavity

filled with random scatterers. The top plate with the attached antennae needs to be

rotated by 180◦. The point scatterers can be seen as small brass cylinders, randomly

arranged inside the cavity. The bottom short wall is movable and acts as a global

perturbation. Figure taken from [4] and referenced herein.

normalized transmission intensity [90] defined as

T̃ =
|S21|2

〈|S21|2〉
. (7.1)

Since our experiment does not probe the total transmission but just one component of

the scattering matrix, we expect localization whenever σT̃ exceeds the critical value of
7
3 [90]. We find (see Fig. 7.2) that this condition is met in the frequency window from

5.5 to 9.0 GHz. Above 9 GHz, the waveguide modes are delocalized, while below 5.5

GHz the values of the variances are error prone, as |S21| decays below the noise level of

the vector network analyzer |S21| < 10−6.

In the delocalized regime, random matrix theory predictions are applicable [91], yielding
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a value of

σ2
T̃
≈ (2Nc + 1)2

N(2Nc + 3)
− 1, (7.2)

where Nc is the number of open channels. In the limit Nc � 1, the variance approaches

the value σ2
T̃
≈ 1, in agreement with our experimental data for the high frequency

regime. We shall henceforth limit our calculation to two windows; a “localized frequency

window” of 6.0-7.5 GHz (Nc = 4) which is shaded in dark grey in Fig. 7.2, and a

“diffusive frequency window” of 10.5-12.0 GHz (Nc = 7), shaded in light grey in Fig. 7.2.

Figure 7.2: Average variance of the normalized transmission, σ2
T̃

, Vs. microwave fre-

quency. The horizontal dashed line denotes the theoretical threshold of 7/3. Frequencies

with an average variance above this threshold are localized, while those below are dif-

fusive. The vertical dotted lines corresponds to the frequencies at which a new mode is

open within the system. The dark grey shading denotes the localized frequency window

and the light grey shading denotes the diffusive frequency window. Figure taken from

[4].

Additional evidence on the nature of the modes in the specific frequency windows,

discussed above, can be found with an appropriate analysis of the whole probability
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distribution of the normalized transmissions. From transmission fluctuations, the nor-

malized transmission should follow Rayleigh-like distributions in the diffusive frequency

window, and then broaden out to log-normal distribution behavior in the localized fre-

quency window [90, 92–94]. The log-normal distribution is defined as

P (T̃ ) ∼ exp

(
−(ln(T̃ )− 〈ln(T̃ )〉)2

2σ2
T̃

)
. (7.3)

The experimental distribution of the normalized transmission is plotted as the solid line

in Fig. 7.3, compare with the best fit of Eq. (7.3) of the peak region (dashed line). An

agreement is seen, and therefore we are confident that the microwaves in the frequency

regime 6.0− 7.5 GHz are localized.

Figure 7.3: Distribution of the normalized transmissions within the localized frequency

window (6.0-7.5 GHz). The solid line is the transmission distribution of the experimental

data. The dashed line is the best fit to the log-normal distribution of Eq. (7.3). The

fitting parameter, σ2
T̃

is found to be 3.37 which is above the threshold value of 7/3.

Figure taken from [4].
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7.3 Experimental Results

In calculating the scattering fidelity for our system, we need to first quantify our per-

turbations. Since our experimental perturbations are determined by geometric means

such as the shifting of the wall of the cavities, the matrix elements of the perturbations

can be constructed in the following way:

(H)nm = w

∫ L

0
dy∇⊥ψn(y) · ∇⊥ψm(y), (7.4)

where w is the wallshift and L is the system length. Since x2 = 〈(H)2
nm〉, we can now

use a Berry conjecture of random plane wave superposition which can be justified for

the case of chaotic wavefunctions. Close to a straight boundary wall with Dirichlet

conditions, the correlations that results in taking an average over the above matrix are

Bessel in nature. Integration of the Bessel [15, 53] correlations yields

x2 = 〈(H)2
nm〉 =

4k2w2L

A2

8
3π

(7.5)

whereA is the area of the system. Since wavefunction correlations that are approximated

as Bessel functions are ultimately semiclassical in nature, the above approximation for

x are highly accurate for high wave numbers, k. For ∆ ∼ 1, the area can be set to

A = 4π to yield

x2 =
2L
3π3

k3w2 =
16L
3c3

ν3w2, (7.6)

where ν is the frequency and c is the speed of light. It is important to note then

that from the above result, we have an expected scaling relation of x ∼ w for chaotic

cavities [15, 53].

7.3.1 Diffusive Regime

Within the diffusive frequency window (10.5 − 12.0 GHz) the same relation holds, i.e.

x ∼ w since it is again expected that the wavefunctions are chaotic in nature. In

performing the calculation, we look at the scattering fidelity 3 resulting from the bulk
3see Eq. (3.9) for the definition of the scattering fidelity
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antenna reflections, S22(E). The main purpose for this rests in the simple fact that the

other antenna is too close to the shifting wall - the perturbation appears locally to this

antenna - therefore the strength is much stronger, resulting in an extremely fast fidelity

decay for S11(E). In Fig. 7.4, we present one of such respective scattering fidelity decay,

for S22(E). The points represent the actual scattering fidelity, while the solid line is the

best fit of the experimental data to the traditional RMT behavior of Eq. (2.8), where

x is the fitting parameter. All fitting was done in the standard perturbative regime for

t < tH . We then perform this fitting procedure for a variety of wallshifts, w, with the

Figure 7.4: A typical fidelity decay in the diffusive frequency window of 10.5− 12 GHz.

The dimensionless wallshift is w/δw = 2. The solid line is a best fit of the data to

Eq: (2.8). The resulting fit parameter x is compared against w/δw in Fig. 7.5 in order

to verify the scaling of Eq. (7.6). Figure taken from [4] and referenced herein.

end purpose to compare the free fitting parameter, x, to the wallshift, w. This is seen

in Fig. 7.5, in which a scaling relation of x ∼ wξ is shown. A power law of ξ ∼ 1.0±0.05

is found, confirming our expectation for diffusive cavities, namely x ∼ w. It is very

important to note that the scaling of the free-fit parameters with the wallshift is what

verifies whether the outcome of RMT, Eq. (2.8), for the fidelity decay is applicable in

the diffusive frequency window.
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Figure 7.5: Within the diffusive frequency window, the scaling of the free-fit parameter,

x of Eq. (2.8) with the dimensionless wallshift w/δw. The dots represent the extracted

data. The solid line is the best fit to a power law relation, x ∼ wξ. A power of

ξ = 1.0± 0.05 is found; thereby confirming the validity of Eq. (2.8). Figure taken from

[4] and referenced herein.

7.3.2 Localized Regime with small perturbations

Within the standard perturbative regime, the theoretical fidelity behavior in the local-

ized frequency window (6.0 − 7.5 GHz) is given by Eq. (6.23). Within this equation,

we will treat α ∼
√
P2w as a free-fitting parameter. In addition to fitting the experi-

mental data of scattering fidelity in the localized frequency window to our prediction of

Eq. (6.23), we also fit the experimental decay to the traditional RMT decay of Eq. (2.8)

with x as a free-fit parameter; this is performed in a similar manner to what was done

in the previous chapter on theoretical modeling (see Fig. 6.3).

A representative experimental fidelity curve together with the fits discussed above are

shown in Fig. 7.6. The data points represent experimental data, the solid line is the

best fit to the novel decay behavior of Eq. (6.23) while the dashed line is the best fit

to the traditional RMT decay of Eq. (2.8). Clearly, the novel decay of Eq. (6.23) fits
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Figure 7.6: A typical fidelity decay for the standard perturbative regime in a localized

frequency window. The points correspond to the experimental data. The solid line

represents a best fit of our theoretically predicted novel decay given by Eq. (6.23) while

the dashed line represents a best fit of the traditional RMT decay of Eq. (2.8). A better

fit to the novel behavior of Eq. (6.23) is observed. Figure taken from [4].

better than the traditional RMT behavior of Eq. (2.8). This can be further quantified

in the scaling of the free-fit parameters. Whichever free-fit parameter (α for the novel

decay and x for the traditional RMT decay) best scales as ∼ w ultimately tells us

which theoretical results performs best in explaining the experimental data. The scaling

analysis is performed in Fig. 7.7, in which the free-fit parameters are plotted against the

dimensionless wallshift, w/δw, and then fitted to a power law of α, x ∼ wξ. Within the

figure the squares correspond to α and the dots correspond to x. For the novel behavior

of Eq. (6.23), a scaling of ξ = 0.92 ± 0.05 was obtained, while a fit to traditional

RMT, Eq. (2.8), gives a scaling of ξ = 1.9 ± 0.05. Therefore, we conclude via a direct

comparison with the experimental data that our modeling, discussed in the previous

chapter, and the subsequent theoretical results are the appropriate ones to describe the

temporal behavior of the fidelity decay in the localized regime. To close this regime,

an emphasis on the relation α ∼ w
√
P2 cannot be understated; this relation dictates
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the slope of the straight line in Fig. 7.7, and may therefore be used to extract out the

inverse participation number in the event of a localized mode.

Figure 7.7: Scaling analysis of the fitting parameters within the localized frequency

window. The squares denote the α parameter from Eq. (6.23) while the dots denote the

x parameter from Eq. (2.8). The straight lines indicate a power law fit to α, x ∼ wξ.

The α then scale properly as ξ = .92±0.05, suggesting Eq. (6.23) as the correct fit. The

failure of the x parameter to scale as x ∼ w (scales as ξ = 1.9± 0.05) further indicates

Eq. (6.23) as the better description of fidelity decay in the localized scattering systems.

Figure taken from [4] and referenced herein.

7.3.3 Localized regime with moderate perturbation

Our theoretical calculations, discussed in the previous chapter, indicate that within

the Wigner (FGR) regime, the temporal behavior of the fidelity is the same for both

diffusive and localized systems. While for diffusive systems, an exponential decay of

fidelity, dictated by the FGR decay rate, can be expected, this is not so clear for the

case of localized systems. We have tested this theoretical prediction with our apparatus.

The crossover between the standard perturbative and Wigner regimes was observed by

eye where the fidelity decay of Eq. (6.23) began failing to capture the decay behavior
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of our experimental measurements, typically occurring at wallshifts with the chaotic

perturbation strength, given by Eq. (7.6), of x ≈ 1. The decay rate of Γ was extracted by

fitting the region 0.3 < t/tH < 1 to the exponential decay of Eq. (6.24). A typical fidelity

decay in this regime is shown in Fig. 7.8, in which the points represent experimental

data. The solid line is the exponential fit of Eq. (6.24) within the aforementioned region.

The fitting is performed for several different wallshifts, and the free-fit parameter Γ is

then extracted and plotted against the dimensionless wallshift (w/δw) in Fig. 7.9. A

Figure 7.8: Fidelity decay for the FGR regime in a localized frequency window. The

points are the experimental data. The solid line corresponds to an exponential (∼ e−Γt)

best fit within the range 0.3 < t/tH < 1. Figure taken from [4].

power law scaling of Γ ∼ wξ is found to hold with a power of ξ = 2.3±0.05. As opposed

to α, x in the standard perturbative regime, the theoretical scaling expectation in the

Wigner regime was found to be Γ ∼ w2.

7.4 Summary

In this chapter, we presented the experimental measurements of fidelity in a quasi 1D

microwave cavity filled with scatterers. First, we determined the frequency windows
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Figure 7.9: Scaling analysis of the exponential fitting parameter Γ from Eq. (6.24), for

localized fidelity in the Wigner regime. The dots denote the Γ parameter. The straight

line indicates a power law fit to Γ ∼ wξ, with a power of ξ = 2.3±0.05. The experimental

data captures the correct scaling of ∼ w2. Figure taken from [4] and referenced herein.

of diffusion and localization by the distribution of the normalized transmission. Next,

we quantified the perturbation and found the scattering fidelity for both windows in

the regime of weak (standard perturbative regime) and moderate perturbations (FGR

regime). For weak perturbations, we found that the scattering fidelity within the dif-

fusive frequency window matched the predictions from the traditional RMT modeling,

which results in a Gaussian decay. Within the localized frequency window, our theoreti-

cal prediction of a novel decay of Eq. (6.23) fitted the experimental data better than the

Gaussian decay as confirmed by the scaling analysis of the fitting parameters. Moreover,

our theoretical model also correctly portray the fidelity behavior in the case of moder-

ate perturbation. This detailed comparison between theory and experiment allowed us

to established fidelity as a new measurable observable of localization phenomena. The

merit of our approach lies on the fact that scattering fidelity incorporates the existence

of absorption phenomena in its own definition. This has far reaching implications as

it will allow experimentalist to distinguish Anderson localization from absorption and
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thus measure localization in a more accurate way.



Chapter 8

PT -Symmetry

One of the key challenges encountered in integrated optics is the substantial level of ab-

sorption, which typically degrades the efficiency of any optical device [95]. Consequently,

considerable research effort has been invested in eliminating or mitigating undesirable

absorption mechanisms. Recently, researchers [96] have chosen to manipulate absorption

and, using a judicious waveguide design consisting of delicately balanced amplification

and absorption regions, they have created a new class of synthetic materials – so-called

PT -materials – that can exhibit intriguing properties, including intensity/power oscil-

lations, non-reciprocal light propagation and tailored energy flow. Their results, and

the experimental tests that will follow, are likely to have an impact in several areas

of physics, ranging from quantum field theory and mathematical physics [97–100] to

solid-state physics [101] and linear [102–104] and nonlinear [105] optics.

This chapter will introduce the notions of the P and T operators in section 8.1. In

section 8.1.1, we will discuss the properties of the eigenvalues and eigenvectors of the

simplest PT -symmetric system, the dimer. Its dynamical properties will be analyzed

in section 8.1.2. Next, we will discuss two recent PT -symmetric experiments in optics

where unconventional behaviors of the beam dynamics were observed. Section 8.2.1

will introduce a “passive” PT -symmetric system (a system with only loss); while an

80
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“active” PT -symmetric system (a system with both gain and loss) will be discuss in

section 8.2.2. We will summarize in section 8.3.

8.1 Introduction to PT -symmetric systems

Parity (P) and time-reversal (T ) symmetries are fundamental notions in physics. They

are defined by their effects on the variable x̂ (the position operator) and p̂ (the momen-

tum operator). P is a linear operator that performs a spatial reflection: x̂ → −x̂ and

p̂ → −p̂. The operator T is an anti-linear operator that performs a complex conjuga-

tion: x̂ → x̂, p̂ → −p̂ and i → −i. There has already been much interest in systems

that do not obey P and T symmetries separately but which respect the combined PT

symmetry [95]. Such systems are described by a Hamiltonian (H) that commutes with

the combined PT operator, i.e. [PT ,H] = 0. Despite the fact that PT -Hamiltonians

can, in general, be non-Hermitian, their spectra can be entirely real. The departure

from Hermiticity, is due to the presence of various gain/loss mechanisms which occur

in a balanced manner, so that the net loss or gain of “particles” is zero. Furthermore,

as some gain/loss parameter γ that controls the degree of non-Hermiticity of H gets

a critical value γPT , a spontaneous PT symmetry breaking can occur. For γ > γPT ,

the eigenfunctions of H cease to be eigenfunctions of the PT -operator, despite the fact

that H and the PT -operator commute [98]. This happens because the PT -operator is

anti-linear, and thus the eigenstates of H may or may not be eigenstates of PT . As

a consequence, in the broken PT -symmetric phase, the spectrum becomes partially or

completely complex. The other limiting case where both H and PT share the same set

of eigenvectors, corresponds to the so-called exact PT -symmetric phase, in which the

spectrum is real (see Appendix C). The simplest physical model showing PT -symmetric

properties is the dimer. In the next section, we will refer to the physical realizations of

this model; while at the same time we will analyze its spectra, eigenfunction and dynam-

ical properties. Due to its extraordinary simplicity, it offers an educational paradigm
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over which the basic ideas of PT -symmetry can be understood.

8.1.1 The Dimer: Eigenvalues and Eigenvectors Analysis

A PT -symmetric system can be realized in optics by creating a medium that has alter-

nating regions of gain and loss, such that the (complex) refractive index profile satisfies

the condition n∗(−x) = n(x). In other words, PT -symmetry requires that the real

part of the refractive index (the potential, in the language of Schrödinger) is an even

function of position, whereas the imaginary part is an odd function (see Appendix D).

Such a construction can be demonstrated using two coupled PT -symmetric waveguides

(a dimer) as shown in Fig. 8.1. Each of the waveguides supports one propagating mode

– one providing gain for the guided light and the other experiencing an equal amount of

loss. Light is transferred from one waveguide to the other via optical tunneling.

Figure 8.1: An illustration of a PT -symmetric dimer. The red waveguide experiences

gain, γ, while the green waveguide experiences an equal loss. The two waveguides are

coupled together by the evanescent coupling, κ.

The PT -symmetric dimer illustrated in Fig. 8.1 is described by the following Hamilto-

nian:

H =

 ε0 + iγ κ

κ ε0 − iγ

 (8.1)

in which κ is the evanescent coupling between the two waveguides, γ is the gain/loss

coefficient, and ε0 is the real part of the index of refraction (which we will set to zero

without a loss of generality). The eigenvalues of this system is found via a direct
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diagonalization to be

En = En + iΓn = ±
√
κ2 − γ2, (8.2)

where n = {1, 2} corresponds to the waveguide number. From the above equation, one

can see that En are real for γ < κ and become imaginary for γ > κ. The sharp transition

from a real to a complex spectrum that take place at γPT = κ, is coined spontaneous

PT -symmetry breaking. These eigenvalues, for κ = 1, is plotted as a function of γ in

Fig. 8.2.

Figure 8.2: Eigenvalues of a PT -symmetric system as a function of γ (Eq.(8.2)) for

κ = 1. The red corresponds to En while the black corresponds to Γn. At γ = γPT , the

two eigenvalues coalesce. For γ > γPT , we enter the broken PT -phase and the branching

of the imaginary part is characterized by the square root behavior of Eq. (8.2).

The corresponding un-normalized eigenvectors takes the following form:

ψ1 =

 ei
α
2

e−i
α
2

 ; ψ2 =

 ie−i
α
2

−iei
α
2

 (8.3)

where sin(α) = γ
κ . Let us consider these eigenvectors for both above and below the
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phase transition point, γPT = κ. Below this point, sin(α) < 1, giving α ∈ <. In this

case, we see that these eigenvectors are also the eigenvectors of the PT -operator. The

intensity, I = |ψ|2, of these two eigenfunctions coincides and is spatially symmetric as

shown by the violet color in Fig. 8.3. On the other hand, above the phase transition

point, sin(α) > 1, i.e. α ∈ =. In this case, they are no longer spatially symmetric as

shown by the blue and orange color in Fig. 8.3 and are not any more eigenfunctions of

the PT -operator.

Figure 8.3: I = |ψ1,2|2 of a PT -symmetric dimer for γ < γPT and γ > γPT when κ = 1.

The violet corresponds to |ψ1,2|2 for γ < γPT . The blue and the orange correspond to

|ψ1,2|2 for γ > γPT .

In fact, for the non-Hermitian Hamiltonian discussed above, the eigenvectors are bi-

orthogonal, i.e. the left and right eigenvectors (〈Ln| and |Rn〉 respectively) are dis-

tinct and 〈Ln| 6= |Rn〉†. Therefore they do not respect the standard (euclidian) ortho-

normalization condition. Previously, we only referred to the right eigenvectors, it is

interesting to also discuss a quantity that characterizes the degree of non-Hermiticity
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of the system defined via the left and right eigenvectors. This quantity is known as the

Petermann factor and is defined as

Knm = 〈Ln|Lm〉 〈Rm|Rn〉 , (8.4)

where,

〈Ln|H = 〈Ln|En and H|Rn〉 = En|Rn〉. (8.5)

The vectors can be normalized to satisfy

〈Ln|Rm〉 = δnm, (8.6)

while ∑
n

|Rn〉 〈Ln| = 1 (8.7)

is the completeness relation.

Here, we study the mean diagonal of the Petermann factor:

K̄N =
1

2N

2N∑
n=1

Knn =
1

2N

2N∑
n=1

〈Ln|Ln〉〈Rn|Rn〉 (8.8)

in which N is the total number of waveguides. This quantity takes the value 1 if the

eigenvectors of the system are orthogonal and larger than one in the opposite case. In

Refs. [106, 107], it has been shown that the Petermann factor can diverge at exceptional

points in the spectrum. This general statement also applies for the Petermann factor of

the single dimer K2, which is found to be

K̄2 =
(γ + κ+ |γ − κ|)2)

4(γ + κ)|γ − κ|
, (8.9)

In Fig. 8.4, we plotted the outcome of the numerical evaluation of Petermann factor (in

fact we plotted the K−1) and compared it with the analytical expression of Eq. (8.9).

Such comparison allows us to conclude that another measure that can be used to identify

the spontaneous PT -symmetry breaking is indeed the Petermann factor. A further

conclusion that we can draw from this analysis is the existence of strong correlations

between the spectrum and the eigenvectors which can affect drastically the dynamics

as we will see later.
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Figure 8.4: Inverse Petermann factor 1
K̄2

, for the simple dimer for κ = 1. The black

dots corresponds to numerical data. The red line corresponds to Eq. (8.9). Courtesy of

S. M. Kumail Akbar.

8.1.2 The Dimer: Dynamics

In the paraxial approximation, the diffraction dynamics of the optical mode electric field

amplitude Ψ = (a, b)T propagates according to the following Schrödinger-like differential

equation:

i
da(z)
dz

= +iγa(z) + κb(z)

i
db(z)
dz

= −iγb(z) + κa(z) (8.10)

where a and b correspond to the waveguides experiencing gain and loss respectively and

z is the propagation distance. The resulting dynamics can be understood by considering

its corresponding Hamiltonian (8.1) in terms of the Pauli Matrix [108]:

H = ωσ̂n̂ (8.11)
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in which ω =
√
κ2 − γ2 is half of the energy difference, σ̂ is the Pauli matrix and

n̂ =
(

1
E
)

(κ, 0, iγ) is a unit vector. Using the matrix identity

Û = exp(−iHz) = cos(ωz)1̂− i sin(ωz)σ̂n̂ (8.12)

where, 1̂ is the unit matrix, a generic initial state evolving under the non-Hermitian

Hamiltonian takes the following form

|ψ(z)〉 = Û {c1|ψ1〉+ c2|ψ2〉} =
1

cosα

 c1 cos
(
ωz
2 − α

)
− c2i sin

(
ωz
2

)
c2 cos

(
ωz
2 + α

)
− c1i sin

(
ωz
2

)
 , (8.13)

where ψ1 =

 1

0

 and ψ2 =

 0

1

 and c1, c2 are some generic coefficients that

respect the normalization.

The total intensity, I(z) = |ψ(z)|2, yields

I(z) =
1

2 cos2 α

(
cos2

(ωz
2
− α

)
+ 2 sin2

(ωz
2

)
+ cos2

(ωz
2

+ α
))

(8.14)

From the above expression, it is obvious that I(z) = 1 for γ = 0 i.e. we have norm

conservation as shown in Fig. 8.5a. In addition, a reciprocal beam dynamics is observed,

i.e. the beam dynamics starting at the left waveguide mirrors the beam dynamics start-

ing at the right waveguide. However, once gain/loss (γ) is introduced into the system,

the total intensity start to deviate from the norm 1. In fact, from Eq. (8.14) for the

γ < κ case, we deduce that, the total intensity, I, oscillates as the square of sinusoidal

functions. At the same time, the beam evolution is not any more reciprocal with respect

to the axis of symmetry of the dimer i.e. the output state depends strongly on which

waveguide we have pumped initially. This non-reciprocal dynamics is a novel charac-

teristic of PT -systems and can be of extreme importance for technological applications

(like integrated optical diodes etc.). For γ > κ, we enter the broken PT -symmetric

phase. In this case, ω ∈ = and α ∈ =; thereby making the total intensity behave as

hyperbolic functions. In other words, the total intensity grows exponentially as seen in

Fig. 8.5c. Also in this case, the beam-dynamics is non-reciprocal.
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Figure 8.5: Numerical simulation of light beam propagation of the active “PT -

symmetric dimer”, where the spontaneous PT -symmetry breaking is γPT = 1. In Figs.

a-c, the left/right panels correspond to an initial excitation at the left/right channel.

The left (red) channel corresponds to the gain channel while the right (green) channel

corresponds to the loss channel. (a) A total passive system corresponding to γ = 0.

This propagation is reciprocal and the total intensity, I, remained constant throughout

the propagation. (b) γ < γPT corresponding to the exact PT -phase. In this case, we

observed a non-reciprocal beam propagation. (c) γ > γPT corresponding to the broken

PT -phase. The total intensity, I, is plotted with the logarithmic scale. Figure taken

from [95].

8.2 Experimental Realizations of PT -Symmetric Systems

in Optics

The simple dimer model has been recently realized in various experimental configura-

tions in the optics framework. In this section we will present these recent experiments

and highlight their main characteristics.
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8.2.1 Loss-induced Transmitivity in Passive PT -symmetric Waveguides

In a recent work [109] reported by Guo et al., a spontaneous PT -symmetric phase tran-

sition was observed during which the transmitivity of the system showed an anoma-

lous behavior. This group designed a non-Hermitian passive/loss optical double well

structure as shown in Fig. 8.6. The two waveguides were fabricated through a mul-

Figure 8.6: A cross section of the double well structure of passive PT -symmetric

waveguides. Light propagates in the left guide and remains in the top layer. The yellow

slap on the right represents the Chromium which introduces loss, γ, in the system.

Figure taken from [109].

tilayer of AlxGA1−x. This 1-D system with a complex refractive index distribution,

n0 + nR(x) + inI(x), is constructed in such a way that the waves will remain in the

top layer and is coupled together via optical tunneling, where n0 is the constant back-

ground index, nR(x) is the real index profile of the structure, and nI(x) stands for the

loss component and depends on the controlled loss parameter, γ. In the experiment,

loss is introduced to the right waveguide by a thin sheet of Chromium. The Hamiltonian
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that describes the propagation of a beam in a such physical set up is:

i

 U̇1

U̇2

 =

 0 κ

κ −iγ

 U1

U2

 (8.15)

where κ is the evanescent coupling between the two waveguides and U1,2 is the optical

mode electric field amplitude.

As a vertically monochromatic light at 1550 nm is sent vertically to the nonlossy waveg-

uide, the total intensity or transmission, T = |U1|2+|U2|2, from both waveguides at some

propagation distance z were measured and plotted as a function of the loss parameter,

γ. Intuitively, one would predict the total intensity to decrease as loss increased in the

system. However, the result shown in Fig. 8.7 is contrary to our intuition! According to

Fig. 8.7, there is an initial decrease in the total tranmission; however, above a certain

critical loss value, the total transmission increases!

Figure 8.7: The total transmission of a passive PT -symmetric dimer as the loss in the

lossy waveguide is increased. The dots corresponds to experimental results and the solid

line corresponds to the theoretical predictions. Notice that above a certain loss value

(∼ 6cm−1), the total transmission increases. Figure taken from [109].

This loss enhanced transmission is a direct manifestation of a PT non-Hermitian system.

In order to see this in a better way, let us perform the following gauge transformation
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of the wavefunction:  U1

U2

 = e−t
γ
2

 ψ1

ψ2

 (8.16)

This allows us to rewrite Eq. (8.15) in the following PT -symmetric form,

i

 ψ̇1

ψ̇2

 =

 iγ2 κ

κ −iγ2

 ψ1

ψ2

 (8.17)

Notice that Eq. (8.17) is identical to Eq. (8.10), whose dynamics we have quantitatively

discussed in the previous section. Specifically, we have shown in Eq. (8.14) that the

total intensity/transmission grows exponentially for γ > γPT . Qualitatively, we can

understand this unconventional behavior by first assuming a case where the coupling

between the two waveguides are much greater than the gain/loss in the system, κ� γ.

In this case, light propagating through the nonlossy waveguide will tunnel to the lossy

one and leak out of the system, leading to the initial decrease in the total transmission.

However, as γ increases and becomes much greater than κ, the two waveguides are effec-

tively decoupled. Thus, light remain in the nonlossy waveguide instead of tunneling to

the lossy one; thereby preserving the total transmissivity of the system to the incoming

intensity.

8.2.2 Observations of PT -dynamics in Photorefractive structures

The loss enhanced transmission is not the only interesting properties of PT -symmetric

systems. Other exotic properties such as intensity/power oscillations and non-reciprocal

light propagation has also been observed in such systems. In particular, C. E. Rüter

et.al. [96] experimentally observed non-reciprocal beam propagation in an “active”

PT -symmetric system.

The“active” system consisted of two coupled PT -symmetric waveguides fabricated from

iron-doped LiNbO3 as shown in Fig. 8.8. Each of the waveguides supports one prop-

agating mode. One of these waveguides is being optically pumped to provide gain
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Figure 8.8: Experimental set-up for the “active” PT -symmetric dimer. An Ar+ laser

beam is coupled into the arms of the structure fabricated on a photorefractive LiNbO3

substrate. Waveguide 1 experiences gain and the amplitude mask blocks the pump beam

from entering into waveguide 2 which experiences loss. The CCD camera at the end

monitors the intensity and phases at the output. Figure taken from [96] and referenced

herein.

for the guided light, while the neighboring waveguide experiences an equal amount of

loss.

Studying the propagation of a light beam in this set-up, Rüter et al. recognized that

as the gain/loss parameter (γ) reaches a critical value (γPT ), a spontaneous breaking of

PT -symmetry occurs. Once again, the beam dynamics of this system was observed to

follow Eq. (8.14). Namely, for γ < γPT , intensity oscillations are seen; while for γ > γPT ,

the total beam intensity starts to grow exponentially. Besides power oscillations, the

most remarkable effect for both of these cases is the appearance of non-reciprocal wave

propagation. By exchanging the input channel from 1 to 2, completely different output

states were obtained (see Fig. 8.9 middle). In other words, the beam dynamics of

an input at channel 1 does not mirror the beam dynamics of an input at channel

2. This non-reciprocal behavior is even more drastic above the transition point (see

Fig. 8.9 bottom). In this case, light always leaves the sample from 1, irrespective of the

input. This is a property that does not exist at γ = 0, where the superposition of two

(symmetric and anti-symmetric) eigenmodes (Fig. 8.3) of the Hermitian Hamiltonian



Chapter 8. PT -Symmetry 93

leads to a reciprocal wave propagation (see Fig. 8.9 top).

Figure 8.9: Experimental results of light beam propagation in the “active” PT -

symmetric dimer. In the above figures, the left/right panels correspond to an initial

excitation at the left/right channel. The left channel corresponds to the gain channel

while the right channel corresponds to the loss channel. (Top) A conventional system

corresponding to γ = 0. This propagation is reciprocal. (Middle) γ < γPT correspond-

ing to the exact PT -phase. In this case, we observed a non-reciprocal beam propagation.

(Bottom) γ > γPT corresponding to the broken PT -phase. Figure taken from [96].

8.3 Summary

We have presented the basic notions of parity-and time-symmetries, and introduce via

a simple model (the PT -dimer), the basic properties of a new class of systems that al-

though not P or T -symmetric they respect the combined PT -symmetry. This chapter

concluded with a review of recent experimental works on simple PT -systems consist-

ing of two coupled guides with balanced gain and loss. Since even a single PT dimer
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exhibits unconventional properties such as loss induced optical transparency, power os-

cillations, and non-reciprocal diffraction patterns, one may ask about more sophisticated

PT systems such as PT optical lattices. Will these PT optical lattices exhibit similar

properties? Are there new features that can be seen? Furthermore, can we quantify the

dynamics of such systems?



Chapter 9

PT -Optical Lattices

In the previous chapter we have discussed a simple model that exhibits PT -symmetry:

two coupled sites with balanced gain and loss. We have analyzed the dynamics of the

system and presented some recent experimental results associated with the realization

of such system in the framework of optics.

In this chapter, we take a step further and study the dynamics of a one-dimensional

PT -symmetric extended system (lattice geometries). We will start in section 9.1 with

the motivation to study such systems. In section 2 we will present the PT -symmetric

lattice that will monopolize our interest. Its spectral properties will be analyzed in sec-

tion 2.1, and the mechanism that leads to the spontaneous PT -symmetry breaking will

be identified and investigated in detail. In the same section we will investigate the effect

of disorder in the spontaneous PT -symmetric phase transition. In section 9.2.2, we will

study the behavior of the wavefunctions by analyzing the so-called Petermann factor

which is a measure of the non-orthogonality of the eigenvectors of a non-Hermitian sys-

tem. Finally in section 9.2.3, we will bring together these results and derive analytically

the beam dynamics of a PT -symmetric lattice.

95
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9.1 Motivation

The interesting beam dynamics found for the simple system that we have presented

in the previous chapter, allow us to hope that more exciting phenomena can occur in

extended lattices such as PT solitons, double-refraction with tailored transverse flow of

optical energy that might pave the way for developing new non-reciprocal optical com-

ponents, where light is propagating forward and backward in a different fashion [96].

This hope is further strengthen by recent numerical stimulations, which indicated [102]

that periodic extended systems with a PT potential show “double refraction” and non-

reciprocal diffraction patterns (see Fig. 9.1). One such example is shown in Fig. 9.1,

where we report the intensity evolution of wide beams exciting a PT lattice with poten-

tial V (x) = A[cos2(x)+iV0 sin(2x)], at angle θ = 2◦ (a), and θ = −2◦ (b). The noticeable

difference between these two diffraction patterns tells us that light propagating in PT

symmetric lattices can distinguish left from right.

Despite the mounting interest in beam dynamics generated by such systems, a detailed

theoretical understanding at the global level is still lacking. At the same time, the effect

of (experimentally unavoidable) imperfections in the properties of PT systems has only

very recently been investigated, and only in the frame of spectral statistics [100, 101,

110]. Thus, our research provides the first contribution toward the understanding of the

beam dynamics [5].

9.2 Dimeric PT -symmetric lattices

In an attempt to understand theoretically the beam dynamics of PT -extended systems,

we analyze here a simple periodic structure motivated by the experimental realization

of Ref. [96, 109]: a lattice consisting of N coupled PT dimers with inter/intra dimer

coupling κ and c respectively [5]. Such model corresponds to a one-dimensional (1D)

array of coupled optical waveguides. Each of the waveguides can support only one mode,
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Figure 9.1: Intensity evolution of wide beams exciting an extended periodic PT lattice

at angle (a) θ = 2◦, and (b) θ = −2◦. There is an obvious difference between the two

propagations, i.e. light can distinguish left from right. Figure taken from[102].

while light is transferred from waveguide to waveguide through optical tunneling. The

array consist of two types of waveguides: type (A) made from gain material whereas

type (B) exhibits the equal amount of loss. Their arrangement in space is such that they

form N coupled (A − B) dimers with inter/intra dimer couplings κ and c respectively

(illustrated in Fig. 9.2).

Figure 9.2: Illustration of the PT -symmetric lattices. The red and the green cylindrical

tubes represent two types of waveguides, (an) experience gain (red) while (bn) experience

equal amount of loss (green). Each of these waveguides supports only one mode and is

coupled by optical tunneling. z is the direction of beam propagation.

In the paraxial approximation, the diffraction dynamics of the optical mode electric field
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amplitude Ψn = (an, bn)T at the nth dimer propagates (along the z-direction) according

to the following Schrödinger-like differential equation:

i
dan(z)
dz

= εan(z) + κbn(z) + cbn−1(z)

i
dbn(z)
dz

= ε∗bn(z) + κan(z) + can+1(z) (9.1)

where the on-site potential ε = ε0 + iγ corresponds to the complex refraction index

in the optics framework [102] and z corresponds to the length the optical waveguides.

Without loss of generality, we will assume below that ε0 = 0 and γ > 0. The coupling

terms (c, κ) = (c0, κ0) can be either constant (corresponding to a fixed distance between

the waveguides) or random due to positional disorder in the waveguide arrangement.

For the latter case we will assume that both are taken from a box distribution of width

w i.e. c ∈ [c0 − w/2; c0 + w/2] and κ ∈ [κ0 − w/2;κ0 + w/2], such that κ0 − c0 > w.

We note that in the case where (c, κ) are random, the array is no longer PT -symmetric.

However, the effective Hamiltonian that describes the system commutes with an anti-

linear operator (this is coined PdT -symmetry in [110]) which is related with the local

PT -symmetry of each individual dimer.

9.2.1 Spectral Analysis

To understand the spectral properties of our system described by Eq. (9.1), it is instruc-

tive to start with the simple, exactly solvable case of N coupled dimers with constant

couplings c0, κ0. To this end, we write the field amplitudes (an, bn) in their Fourier

representations i.e.

an(z) =
1

2π

∫ π

−π
dqãq(z) exp(inq)

bn(z) =
1

2π

∫ π

−π
dqb̃q(z) exp(inq) (9.2)

Substitution to Eq. (9.2) leads to

i
d

dz

 ãq(z)

b̃q(z)

 = Hq

 ãq(z)

b̃q(z)

 ; Hq =

 ε υ

υ∗ ε∗

 (9.3)
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where υ = κ + c · e−iq. Substituting in Eq. (9.3) the stationary form (an, bn)T =

exp(iEt)(A,B)T yields

E

 A

B

 =

 ε υ

υ∗ ε∗

 A

B

 (9.4)

The spectrum is obtained by requesting a non-trivial solution i.e. (A,B) 6= 0. In this

case we obtain the band structure of this diatomic PT system:

E(q) = ±
√
κ2 + c2 + 2κc cos(q)− γ2; q ∈ [−π, π]. (9.5)

For γ = 0, we have two bands of width 2c, centered at E = ±κ. Notice that this

dispersion relation is obtained for an infinite lattice. However, experimentally feasible

lattices are finite. For a finite system, we must take into consideration the relational

strength of the inter/intra coupling κ and c due to the fact that the spectral behavior

is different for systems with κ
c < 1 and κ

c > 1.

κ
c < 1

For the inter dimer coupling less than the intra dimer coupling, κ
c < 1, the existence

of “surface states” leads to an exponentially small spontaneous PT -symmetry breaking

point, γPT [101], ie. the real part of the energy level cross and branch into the imaginary

plane for exponentially small γ as shown in Fig. 9.3. Experimentally, such small γPT are

unfavorable since the total intensity grows exponentially above this transition point –

leading to heating that can potentially destroy the optical system. Thus, in the analysis

that follows, we will focus solely on the case where the inter dimer coupling is greater

than the intra dimer coupling, i.e. κ
c > 1.

κ
c > 1

For the case where κ
c > 1, the two bands are separated by a gap δ = 2(κ − c) and the

PT -exact phase extend over a large γ-regime. As γ increases beyond γPT the spectrum
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Figure 9.3: Imaginary part of the energy vs. γ for N = 10, c = 5, κ = 1. We observe

an exponentially small γPT .

becomes partially complex (see Fig. 9.4). The mechanism for this breaking is level

crossing between levels (corresponding to q = π) belonging to different bands [110]: it

follows from Eq. (9.5), that when γ = γPT = δ/2, the gap disappears and the two (real)

levels at the “inner” band-edges become degenerate; for γ > γPT they branch out into

the complex plane, displaying the characteristic behavior [100, 101, 110]:

Γ ≡ =m[E(q = π)] = ±
√
γ2 − γ2

PT ; γPT = κ− c. (9.6)

It turns out that the same scenario for the transition from the exact to the broken phase

applies for the case of random couplings κ, c as well (see Fig. 9.5). In this case however

γPT is a random variable. Thus, a complete theoretical analysis has to take this into

consideration and provide predictions for the expectation value of γPT , as well as the
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Figure 9.4: Both real and imaginary part of the energy vs. γ for N = 10, c = 1, κ = 2.

The black corresponds to the <e{En} and the red corresponds to the =m{En}.

distribution of it around the mean value.

Inspired by the second part of Eq. (9.6) the following scaling law for γPT was suggested

in Ref. [5]:
〈γPT 〉
c0

= x− 1; x =
κ0

c0
. (9.7)

This scaling relation is confirmed by our numerical data for the average 〈γPT 〉 for various

(κ0; c0;N ;w) values as shown in Fig. 9.6. For each point in this figure, an ensemble of a

considerable number of different disorder realizations (at least 104) has been used. From

each realization we have identified γPT which was then used in our scaling analysis. The

agreement between our data and Eq. (9.7) is evident.

Additionally, we study the distribution of γPT . The latter (even in the case of disorder)

is γPT = δ/2 where δ is the size of the band-gap and is of course a random variable
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Figure 9.5: Same as Fig. 9.4, but with disorder. Both real and imaginary part of the

energy is plotted vs. γ for N = 10, c0 = 1, κ0 = 2 and w = .002. The black corresponds

to the <e{En} and the red corresponds to the =m{En}.

for (c, κ) being random numbers. We invoke perturbation theory with respect to the

perfect lattice. The perturbation scenario indicates that weak disorder will cause a small

shift of the levels. Thus, the new band-gap is δ ±∆δ. The correction in the first order

perturbation theory is

∆δ ∼
N−1∑
n=1

(AnBnδκn +An+1Bnδcn+1), (9.8)

with the coefficients An = A sin( 2πNn
2N+1) and Bn = B sin( 2πNn

2N+1). If δκn and δcn are

Gaussian distributed, it would be immediately clear based on a central limit theorem,

that the distribution of γ̃PT ≡ γPT −〈γPT 〉
σ = ∆δ

σ , P(γ̃PT ), is a Gaussian (σ = w/
√

12

is the standard deviation of the box distribution). This should remain approximately

true also for the box-distribution, employed in our numerics, if the number of terms in
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Figure 9.6: The average 〈γPT 〉/c0 Vs. κ0/c0 for various system sizes 2N and disorder

strengths w. The dashed line represents the theoretical prediction of Eq. (9.7). For γ

values below this line, we are in the exact PT -symmetric phase. Above this line, we

enter the broken PT -symmetric phase. Figure taken from [5].

the sum is sufficiently large. This expectation is confirmed in Fig. 9.7.

9.2.2 Eigenvector Analysis

For the analysis of the eigenvectors, we study the Petermann factor (Eq. (8.8)) defined

in section 8.1.1. We conjecture that the anomalous behavior of KN near the exceptional

points, is dominated by the contributions of pairs of PT -symmetric states in the vicinity

of these points. These pairs form effective dimers with a coupling κ. The mean Peter-

mann factor of the single dimer K2 was found in Eq. (8.9). Fig. 9.8 shows our numerical

data for 〈K̄N 〉−1, (where 〈· · · 〉 indicates an additional averaging over different disorder
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Figure 9.7: Gaussian distribution P(γ̃PT ) of the scaled parameter γ̃PT ≡ (γPT −

〈γPT 〉)/σ, (σ is the standard deviation) for various system sizes, disordered strengths

w and (κ0, c0) values. Figure taken from [5].

realizations), for different system sizes, N , near the first exceptional point occurring

at γPT . The good agreement with Eq. (8.9) confirms the validity of our assumption.

Obviously, we want to test the validity of our conjecture for the whole distribution

of Petermann factors as well. Specifically using Eq. (8.9) we find that close to the

exceptional point we will have P (KN → ∞) ∼ 1/K2
N . This result, agrees perfectly

with the numerical data shown in Fig. 9.9. It is interesting to note that the P (KN )

found for the case of the PT -Hamiltonians is different from the one reported for the

distribution of Petermann factors for the Ginembre ensemble of non-Hermitian Random

Matrices (P (KN →∞) ∼ 1/K3
N ) [111].
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Figure 9.8: The inverse Petermann factor 1/K̄ as a function of γ̄ ≡ 2N(γ − γPT ) for

various system sizes N . The black corresponds to 2 sites, red corresponds to 50 site,

and green corresponds to 100 sites. Inset: The dependence of K̄−1 from γ̄ close to the

critical point. The data are reported in a double-logarithmic fashion. The dashed line

has slope −1 and is drawn to guide the eye. Figure taken from [5].

9.2.3 Beam Propagation

We turn now to the study of the dynamics of PT systems. Our interest will be focused

on understanding the temporal behavior of the total power/intensity. First, we will

give a general argument, based on the behavior of the Petermann factor. We start by

writing the evolving beam in terms of left and right eigenvectors of the non-Hermitian

Hamiltonian H:

|ψ(z)〉 = e−iHz|ψ(0)〉 =
∑
n

|Rn〉e−iEnz〈Ln|ψ(0)〉 (9.9)
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Figure 9.9: The distribution of the Petermann factors P (K̄) near γPT . The black

corresponds to 2 sites, red corresponds to 50 site, and green corresponds to 100 sites.

Figure taken from [5].

Ensemble averaging with 〈ψ(0)|ψ(0)〉 = 1 yields for the total intensity I(z)

I(z) ≡ 〈ψ(z)|ψ(z)〉 =
1
N
∑
n,m

e−i(En−E
∗
m)zKnm. (9.10)

In the large time limit (and omitting oscillations), one can calculate I(z) using a diagonal

approximation

I(z) ≈ 1
N
∑
n

e2ΓnzKnn. (9.11)

Following this expression, let us now consider the three cases of γ. If γ < γPT , then

the eigenvalues En are real, which means that the imaginary part, Γn = 0. According

to Eq. (9.11) for this case, I(z) scales as the Petermann factor:

I(z) ∼ K̄; γ < γPT . (9.12)
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On the other hand, if γ > γPT , the dominant term in the sum of Eq. (9.11) is associated

with the levels that first cross and breaks the PT symmetry and acquire an imaginary

part given by the positive branch of Eq (9.6). Thus, the exponential term in Eq. (9.11)

will dominate and yields an exponential growth in the total intensity,

I(z) ∼ exp(2
√
γ2 − γ2

PT z); γ > γPT . (9.13)

Now, what about the case when γ = γPT ? Let us recall from the analysis of the

eigenvectors that at the transition point, γPT , the Petermann factor associated with the

pair of states that break the PT -symmetry diverges. As a result, the sum in Eq. (9.11)

is dominated by the corresponding term which leads us to conclude that the temporal

behavior of I(z) at the PT transition point can be approximated by the dynamics of a

two level system [108]. To this end, we write the 2× 2 PT Hamiltonian H in the form

of Eq. (8.11) and use the method discussed in section 8.1.2 to find (see Appendix E)

the total intensity to be

I(z) = 〈ψ(0)|Û †Û |ψ(0)〉 ∼ z2; γ = γPT . (9.14)

These results are plotted in Fig. 9.10 where our numerics are in agreement with our

theory.

The results of this heuristic derivation can be obtained in a more formal way by perform-

ing the derivation in the momentum space. For this exact derivation, we note that the

two-component wavefunctions for different q-values in Eq. (9.3) are decoupled, allowing

us to evaluate the evolution of the q-th momentum component under the following 2×2

Hamiltonian Ĥq. The resulting evolution operator Ûq can be written in the following

form (see section 8.1.2)

Ûq ≡ e−iHqz = cos(
1
2
ωz)1̂− i sin(

1
2
ωz)σ̂n̂, (9.15)

where ω = 2
√
|υq|2 − γ2, while the unit vector, n̂ = 2

ω (|υq| cos(q), |υq| sin(q), iγ). As-

suming an initial δ-like packet in position space, all of the components in the mo-

mentum space are initially occupied with equal weight. Thus, the probability density
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Figure 9.10: The temporal behavior of the total beam power for three different values

of γ with c0 = 1 and κ0 = 2. The red corresponds to γ < γPT where I(z) ≈ constant for

long time. The black corresponds to γ = γPT where I(z) ∼ t2. The blue corresponds to

the γ > γPT where I(z) ∼ exp(2Γt) with Γ =
√
γ2 − γ2

PT . The solid lines correspond

to the perfect lattice and the dashed lines correspond to the disordered lattice with

w = 0.5. The dot-dashed lines are the fittings of our analytical results. Figure taken

from [5].

pq(z) ≡ |ãq|2 + |b̃q|2 to find the system with momentum q at a certain propagation

distance z is

pq(z) = cos2(
ωz

2
) +

4(γ2 + |υq|2)
ω2

sin2(
ωz

2
) (9.16)

Using Percival’s theorem I(z) = 1
2π

∫ π
−π dqpq(z), we get P (z). To this end, one has to

note that the q-integral is dominated by the q = ±π component which is associated

with the pair of levels that first cross, leading to the spontaneous breaking of the PT

symmetry. This pair, for γ = γPT give us a p±π ∼ z2 behavior (see Fig. 9.11), while for

γ > γPT we get p±π ∼ exp(2Γz).

Therefore, we confirmed that the total intensity, I(z), takes the following form in each
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of the three regimes.

I(z) ∼


K̄ for γ < γPT

z2 for γ = γPT

exp(2
√
γ2 − γ2

PT z) for γ > γPT

(9.17)
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Figure 9.11: The survival probability pq(z) of representative momentum components for

the periodic dimer at γ = γPT . The q = ±π is responsible for the quadratic evolution

of the total power. Figure taken from [5].

Since experimentalist are able to measure the total intensity inside the system, this can

be used as a good observable to distinguish between exact and broken PT -phase in the

case of extended systems where direct imaging might be a complicated process.

9.3 Summary

We have analyzed the evolution of the beam intensity I(z) in extended PT -lattices and

show that it is independent on the microscopic details (like disorder or periodicity) of
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the system. Three universal regimes were identified based on the value of the non-

Hermiticity parameter γ: for γ < γPT , the overall total beam power oscillates around

some constant; for γ > γPT , it increases exponentially; while for γ = γPT it grows

quadratically due to the bi-orthogonal nature of the eigenstates (singularities of the

Petermann factor). Our theoretical results were exhibited numerically for an experi-

mentally realizable case of a chain of coupled dimers. Our results will find direct appli-

cations in optics where waveguide arrays with PT symmetries are promising candidates

for a new type of synthetic materials, with exotic beam propagation properties.



Chapter 10

Conclusions and Outlook

In this thesis, we studied the dynamics of leaking systems with and without amplification

using the non-Hermitian formalism.

In the first part of this thesis, we measured Anderson localization in quasi-one-dimensional

waveguides in the presence of absorption by analyzing the echo dynamics due to small

perturbations. We specifically showed that the inverse participation number of localized

modes dictates the decay of the fidelity, differing from the Gaussian decay expected for

diffusive or chaotic systems. Our theory, based on a random matrix modeling, agrees

perfectly with scattering fidelity measurements in a quasi-one-dimensional microwave

cavity filled with randomly distributed scatterers.

In the second part of this thesis, beam dynamics in synthetic optical media with PT -

symmetries imposed by a balanced arrangement of gain and loss was investigated.

We found that the beam intensity evolution is insensitive to microscopic details of

the gain/loss parameter. Our theoretical calculations were confirmed numerically for

the experimentally realizable case of a lattice consisting of coupled PT -symmetric

dimers.

There is still a lot of work to be done for future research in open systems especially
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in the framework of PT -symmetry. The latter, being a new field, has much more to

be explored and this thesis is just a first step toward understanding some of the exotic

features it exhibits. The ultimate target is to use PT -symmetric systems to control the

flow of light. Hopes in this direction are high since it has been recently shown [112] for

a single dimer that the interplay of non-reciprocal behavior arising from PT -symmetry

and the self-trapping phenomena associated with Kerr nonlinearities can mold the flow

of light in a unidirectional way–providing a forefront for a new generation of optical

isolators or diodes. One can then ask, how would nonlinearities affect the behavior of

the beam propagation in a lattice set-up?

Apart from optics, PT -systems can be studied in other fields of physics as well, such as

mathematical physics and fundamentals of quantum mechanics, quantum field theories,

and atomic and solid-state physics. The journey to fully explore systems with PT -

symmetry can be described by a quote from Winston Churchill, “every day you may

make progress. Every step may be fruitful. Yet there will stretch out before you an

ever-lengthening, ever-ascending, ever-improving path. You know you will never get to

the end of the journey. But this, so far from discouraging, only adds to the joy and

glory of the climb.”



Appendix A

Fidelity and Decoherence

A.1 Static bath

First we will examine the case where the environment (i.e. a scatter) has no dynamics

of its own. In this case, we will consider a bath that consists only of spin-1/2 particles.

This spin is located on the right arm of the ring so it interacts only with the right

partial wave. According to [39], the interaction takes place within a range l and has

an interaction time of τ = l/(pe/me), where pl is the momentum of the electron and

ml is its mass. The spin-electron interaction is modeled by an Ising-like coupling V0σ̂z.

If the spin at t = 0 is in an eigenstate of σ̂z then the scattering is said to be elastic

and the interference term is multiplied by a phase vector. On the other hand if the

spin is initially in another eigenstate, e.g. |σ̂x = +1〉, the scattering is inelastic in the

sense that the quantum state of the scatter is changed. This inelastic scattering leads

to dephasing in the following way: At time t = 0, the total wave function is

Ψ(t = 0) =
1√
2

[[l(x = A, t = 0) + r(x = A, t = 0)]⊗ [|σz = +1〉+ |σz = −1〉]]. (A.1)
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After passing through the scatterer, the wave function evolves as

Ψ(t) =
1√
2

[l(x, t)⊗[|σz = +1〉+|σz = −1〉]+r(x, t)⊗[e−iV0τ |σz = +1〉+e+iV0τ |σz = −1〉]]

(A.2)

and at the point B, the interference term is

cos(V0τ)2<e[l∗(B, t0)r(B, t0)], (A.3)

hence it is reduced by the factor cos(V0τ). Let us look at the most drastic case where

V0τ = π/2. From the perspective of the bath, the effect of the interaction was to change

the state of the scatterer from σx = +1〉 to |σx = −1〉 thus the wavefunction of the

system is

Ψ(t0) = l(B, t0)⊗ |σx = +1〉+ r(B, t0)⊗ |σx = −1〉, (A.4)

and the interference is completely lost. From the electron’s point of view, we look only

at the wavefunction of the partial waves

l(B, t0) + eiφr(B, t0). (A.5)

where φ is the electron phase. In this view, the right partial wave is now a statistical

variable whose probability distribution is

P (φ) =

 0.5 for the phase to be− V0τ

0.5 for the phase to be + V0τ
(A.6)

When the interference term is calculated, it is obtained as a function of the phase, and

then averaged over the phase distribution function. Due to the periodicity of eiφ, the

maximal phase uncertainty is ±π/2 and when V0τ = π/2, the interference is destroyed

and leads to a total loss of coherence.

A.2 Dynamical bath

Next, we consider a bath with (possibly complex) dynamics generated by the Hamilto-

nian Ĥbath(η) and an interaction given by V̂ (xr(t), η). Here xr(t) denotes the position
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of the electron and indicates that the interaction takes place only on the right half

of the ring. Starting with the initial wavefunctions in Eq. (2.2), we obtain the total

wavefunction at the point B

ΨB(t0) = l(B, t0)⊗e−iĤbatht0χ0(η)+r(B, t0)⊗T̂ exp
[
−i
∫ t0

0
dt(Ĥbath(η) + V̂ (xr(t), η))

]
χ0(η)

(A.7)

where T̂ is the time-ordering operator. By using the interaction picture (with respect

to the unperturbed bath evolution Ĥbath(η)) we obtain the potential V̂I((xr(t), η), t) =

eiĤbatht0 and the above equation becomes

ΨB(t0) = l(B, t0)⊗e−iĤbatht0χ0(η)+r(B, t0)⊗e−iĤbatht0 T̂ exp
[
−i
∫ t0

0
dtV̂ ((xr(t), η), t)

]
χ0(η).

(A.8)

Hence, the interference term is multiplied by

〈χ0|e+iĤbath(η)t0e−iĤbath(η)t0 T̂ exp
[
−i
∫ t0

0
dtV̂ ((xr(t), η), t)

]
|χ0〉, (A.9)

in which one immediately recognizes the fidelity amplitude. From the viewpoint of the

bath, the fidelity can be seen in the following way: if the particle takes the left bath,

the bath evolves under its own dynamics generated only by the Hamiltonian Ĥbath

and we obtain |χl〉 = e−iĤbath(η)t0 |χ0〉. On the other hand, if the particle takes the

right path, the evolution of the bath is changed by a perturbation V̂I leading to |χr〉 =

e−iĤbath(η)t0 T̂ exp
[
−i
∫ t0

0 dtV̂ ((xr(t), η), t)
]
|χ0〉. and hence the overlap of the two states

is reduced. From the electron’s perspective, we would once again start with the partial

wavefunctions Eq. (A.5). However, now the accumulated phase has a more complex

distribution since it depends not only on the initial state of the bath χ0(η) and the time

τ of the interaction but also on the internal dynamics generated by Ĥbath. The effect of

the interaction of the electron with the bath is then to multiply the interference term

with the expectation value of the phase〈eiφ〉 = 〈χ0|T̂ exp[−i
∫ t0

0 dtV̂I((xr(t), η), t)]|χ0〉.

In order to calculate this average one has to also trace over the bath, since its initial

state is unknown. Then, for the broad and slowly varying distribution P (φ) this average

is likely to be zero, causing decoherence, i.e. f(t) = 0.
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Expansion Coefficients of

Fidelity

The expansion coefficient is derive in the following way:

c∗nck = 〈ψ0|n(0)〉〈k(0)|ψ0〉 =

(∑
i

ψ0,in
(0)
i

)
×

∑
j

ψ0,jk
(0)
j

 =
∑
i,j

ψ0,iψ0,jn
(0)
i k

(0)
j .

(B.1)

The ensemble average of this quantity is thus:

〈c∗nck〉 ≈
∑
i,j

〈ψ0,iψ0,j〉〈n(0)
i k

(0)
j 〉, (B.2)

where ψ0,i is the ith component of the initial wave function in a Wannier basis, and the

n
(0)
j is the jth component of the nth eigenstate of H1, in the Wannier basis. Since the

eigenstates of H1 are exponentially localized, the average overlap between the localized

states are negligible (unless the two eigenstates are either the same eigenstate or their

localized peak within the localization length of another eigenstate). The average of the

second term in the expression above is:

〈n(0)
i k

(0)
j 〉 = δn,kδi,jl

−1
∞ δ(i ≤ l∞) (B.3)
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Substituting this expression back into the ensemble average:

〈c∗nck〉 ≈
∑
i,j

〈ψ0,iψ0,j〉δn,kδi,jl−1
∞ δ(i ≤ l∞) (B.4)

Simplifying the above expression give us:

〈c∗nck〉 ≈
δn,k
l∞

∑
j≤l∞

|ψ0,j |2 ≈ σδn,k, (B.5)

where σ = l−1
∞
∑

j≤l∞ |ψ0,j |2.



Appendix C

Exact vs. Broken PT -phase

Due to the fact that the PT operator is anti-linear, the eigenfunctions of the Hamilto-

nian, H, are not necessarily the eigenfunctions of the PT operator, despite the fact that

H and the PT operator commute. In the case that both the Hamiltonian and the PT

operator share the same set of eigenvectors, the energy spectrum is real. This is what

is known as the “exact” PT -phase. This is realized by letting Hφ = εφ.

[PT ,H] = 0 (C.1)

PTHφ = HPTφ = 0 (C.2)

ε∗(PTφ) = H(PTφ) (C.3)

Therefore, PTφ is an eigenfunction of H with eigenvalue ε∗. Now, let us assume that

that PT and H share the same eigenfunction φ, i.e. PTφ = λφ, then the above equation

becomes,

ε∗λφ = Hλφ (C.4)

ε∗λφ = λεφ (C.5)

ε∗ = ε (C.6)
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ε ∈ < (C.7)

Similarly, it is easy to show that if ε ∈ <, then PT and H share the same set of eigen-

functions. On the other hand, if PT and H do not share the same set of eigenfunctions,

then the energy spectrum becomes partially or completely complex. This is known as

the “broken” PT -phase. Of particular interest is the study of this phase transition

behavior at the spontaneous breakdown of PT symmetry which occurs as a certain

parameter that controls the non-Hermiticity of the Hamiltonian increases beyond some

critical value.



Appendix D

PT -symmetric potential

For a non-Hermitian Hamiltonian of the type: H = p2 + V (x), PT -symmetry requires

that the real part of the complex potential, V(x), to be even while the imaginary part

of the complex potential to be odd. The proof of this claim is as follow:

PT [PT ,H]φ = 0 (D.1)

PTPTHφ = PTHPTφ (D.2)

(PT )2(p2 + V (x))φ = PT (p2 + V (x))PTφ (D.3)

Since (PT ) = 1 and PT is an anti-linear operator, we get:

[p2 + V (x)]φ = [p2 + V ∗(−x)]φ (D.4)

V (x) = V ∗(−x) (D.5)
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Appendix E

Total Intensity

Let us recall from Chapter 8 (section 8.1.2) that the total intensity of the 2 × 2 PT

Hamiltonian is

I(z) =
1

2 cos2 α

(
cos2

(ωz
2
− α

)
+ 2 sin2

(ωz
2

)
+ cos2

(ωz
2

+ α
))

(E.1)

where ω =
√
κ2 − γ2 is half of the energy difference and sin(α) = γ

κ .

The spontaneous PT -symmetry breaking point, γPT , occurs when κ = γ. At this

transition point, ω = 0 and α = π
2 . Plugging this into Eq. (E.1) yields an indeterminate

form of 02

02 . Applying L’Hospital’s Rule twice to Eq. (E.1) yields the result for the total

intensity at the transition point,

I(z) ∼ z2 (E.2)
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