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Abstract

In this thesis we consider an atomic Bose-Einstein condensate (BEC) loaded in a biased
double well potential trap with tunneling rate k and interatomic interaction U . The
BEC is prepared such that all N atoms begin in one well. We drive the system by
steadily changing the potential difference ε between the two wells. The driving of the
system generates many-body Landau-Zener transitions which lead to a redistribution of
the atomic population. We have investigated not only the first moment of the evolving
occupation statistics, but all its moments, in particular, its variance. Our analysis
indicates that depending on the interaction u = NU/k and the sweep rate ε̇, one can
distinguish between three dynamical regimes: adiabatic, diabatic, and sudden. The
analysis goes beyond the mean-field theory calculations used in the existing literature
and is complemented by a semiclassical picture. We expect that our results will also
shed light on the related area of mesoscopic electronics, where the problem of counting
statistics is of great importance.
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1 Introduction

Bose-Einstein condensation of ultra-cold atoms is a topic which currently is very popu-

lar, both in theoretical and experimental research. The most fascinating of these experi-

mental accomplishments include the realization of Bose-Einstein condensation (BEC) of

ultra-cold atoms in optical lattices [2, 9, 39] and the creation of “atom chips” [22], which

have been suggested as potential building blocks for quantum information processing

[42]. In addition, the experimental study of BEC allows for novel, concrete applications

of quantum mechanics, such as atom interferometers [43], transistors [36] and atom lasers

[21]. In fact, the emerging field of atomtronics, i.e. the atom analogue of electronic ma-

terials, devices, and circuits, is predicted to be able to provide much more powerful

devices than solid state ones. Atomtronics can be controlled to an extraordinary degree

of precision, with respect not only to the confining potential, but also to the strength of

the interaction between atoms, their preparation, and the measurement of the atomic

cloud.

The aim of this thesis is to investigate the occupation statistics of a BEC in a driven

double well potential. This problem has been studied heavily by theoreticians in the last

few years, but due to recent experiments [1], interest in it has significantly intensified.

Nevertheless, the majority of published works are based on the mean-field approach.

There are only a few studies that have made further progress within the framework of a

full quantum mechanical treatment of the system [58, 34, 56]. However, they only focused

on calculating the average occupation of the wells, due to the inherent complexity of the

calculation of the total occupation statistics. This thesis undertakes to study the latter,
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1 Introduction

providing a many-body occupation statistics theory for the first time.

This thesis is structured as follows:

• Chapter 2 will set up the mathematical and physical framework for the description

of bosons on an optical lattice. It will begin with a brief introduction of the

history that led to the realization of Bose-Einstein condensation, including the

basic concepts behind creating a BEC. Furthermore, it will discuss how the BEC

can be manipulated using optical lattices. We then introduce the Bose-Hubbard

Hamiltonian (BHH), which is the standard mathematical model used to describe a

BEC in a deep optical lattice. We go on to discuss the classical limit of the BHH,

known as the Discrete Nonlinear Schrödinger (DNLS) equation. Then we describe

the BHH for the double well potential (dimer). Finally, we discuss some recent

experimental work by the Heidelberg group (see Ref. [1, 37]), and emphasize its

importance and relevance to our own studies.

• In Chapter 3, we analyze the wavepacket dynamics of a BEC in a symmetric

dimer trap. We begin by exploring the quantum evolution of the atomic popu-

lation, touching on time-dependent perturbation theory for two limits: the small

coupling regime and the small interatomic interaction regime. We then analyze the

classical limits of wavepacket dynamics. To this end, we provide an understanding

of the phase space of our system. We end the chapter by incorporating a semi-

classical calculation that captures the essential features of the quantum dynamics.

Comparisons between the results of the quantum evolution and the semiclassical

prediction indicate the strengths of the semiclassical method [11].

• In Chapter 4, we discuss the physics of one-body Landau-Zener transitions - a

vital component in determining the behavior of systems which are described by

a time-dependent (parametric) Hamiltonian, such as the driven dimer. We do

our presentation in a general context, introducing a few driven systems that are

described by a parametric Hamiltonian. Next, we discuss the equations of motion
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1 Introduction

for a generic driven system. We then note how adiabaticity can be achieved in

such a system. Finally, we go through a simple example of a two-level system and

derive the Landau-Zener transition probability.

• Chapter 5 will present and analyze the dynamics of a BEC in a driven double

well potential. First, it will enumerate some of the motivations behind study-

ing this problem. Then, utilizing the mean-field framework, we will extend the

Landau-Zener theory reviewed in Chapter 4 to a nonlinear system. The quantum

and semiclassical approach to the problem will be discussed next. Depending on

a rescaled interatomic interaction strength, we will be able to predict various dy-

namical scenarios as they depend on the driving rate. We will end the chapter

by comparing our numerical and theoretical findings, including a useful scaling

relation between the average population and its variance. The resulting scaling

theory highlights the influence of interatomic interactions on the noise associated

with the transport of atoms between wells. It can also shed some light on the prob-

lem of counting statistics in mesoscopic electronics in the presence of many-body

interactions. [47]

We expect that our results will guide ongoing experimental efforts of Bose-Einstein

condensates loaded into driven double well potentials [16, 20, 30]. These efforts will be

focused on atomtronics, where it is vitally necessary to understand all sources of noise

and how to control it so as to achieve optimal atomic transport. We also hope that our

many-body occupation statistics theory will inspire further understanding of counting

statistics in the frame of mesoscopic electronics.
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2 Cold Bosons Interacting on a Lattice1

This chapter is dedicated to presenting a mathematical and physical foundation for this

thesis. We begin with a brief summary of the history leading up to the realization of Bose-

Einstein condensation. Next, in §2.2, we give a short overview of how optical lattices can

be used to manipulate Bose-Einstein condensates. In §2.3, we present the Bose-Hubbard

Hamiltonian in second quantization. We discuss the appropriate semiclassical limit of

the BHH, thereby deriving the Discrete Nonlinear Schrödinger (DNLS) equation in §2.4.

The BHH for the dimer is discussed in §2.5. Finally, we summarize a recent experiment

done with a BEC in a double well potential.

2.1 Bose-Einstein Condensation

Bose-Einstein condensate (BEC) was conceptualized and then realized through the ef-

forts of many different prominent physicists during the last century. The story begins

with Wien’s law, the formula which was used to describe black-body radiation until

1900. Wien’s law stated that uν = ν3f(ν/T ), where uν is the energy density and f is

a function of frequency and temperature. It was empirically shown that f should have

the form of an exponential, aν3e−bν/tT . Max Planck, as stickler for theoretical analysis,

began to try to derive Wien’s Law in 1894. Approximating a system to be made up of

many oscillators, Planck came to the conclusion that Wien’s law was correct and pre-

sented his findings to the Prussian Academy of Sciences. Four months later, in October

1900, Heinrich Rubens and Ferdinand Kurlbaum experimentally showed that Wien’s law
1This chapter taken with slight revisions from my Honors Thesis [46].
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2 Cold Bosons Interacting on a Lattice

fails for black-body radiation at low frequency and high temperature - while Wien’s law

indicated that as ν/T shrinks, uv ∝ ν3, experimental results showed that uv does, in

fact, depend on temperature. Using these experimental results as a guide, Planck was

able to derive what is known today as Planck’s Law:

uv =
8πν2

c3

ε

e
ε

kBT − 1
(2.1)

where ε = hν. In deriving his law of black-body radiation, Planck, as he later stated

in a letter, ”was ready to sacrifice every one of [his] previous convictions about physical

laws,” excepting the first two laws of thermodynamics, which he stated ”must be upheld

under all circumstances.”[35] One of the previous convictions Planck sacrificed was his

opposition to the use of statistics to derive physical laws. A key step in his derivation

is the use of Ludwig Boltzmann’s relation S ∝ lnW , where S is entropy and W is the

probability of a system being in a given state. Since Planck did still have an aversion

to the use of probabilities, he reinterpreted W as the number of different ways a total

energy E, divided into ”energy elements” of ε, could be distributed among a number of

oscillators. He labeled these energy elements ε = hν. Planck’s original hope was to,

after having used ε to come up with a law for black-body radiation, take the limit as

h → 0, making the energy continuous. However, he found that only with the energy

elements in place, did his law match the experimental data. When later asked how

he chose to incorporate energy quantization, he wrote ”Briefly summarized, what I did

can be described as simply an act of desperation...[The energy element] was purely a

formal assumption.”[35] Though Planck used the concept of energy quanta, he did not

fully understand its implications for physics. It was Albert Einstein who emphasized the

importance of quantum theory by publishing a series of papers, most notably his theory

of light quanta (or photons) in 1905.

Though Planck’s law of black-body radiation, published in 1900, was correct, he used

Boltzmann’s statistics incorrectly, so Einstein rederived it directly from Boltzmann’s
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2 Cold Bosons Interacting on a Lattice

statistics and Maxwell’s equations and while doing so found that light was, in fact,

quantized. In 1924, Satyendra Nath Bose then rederived Planck’s law of black-body

radiation again, except while treating light as corpuscles, rather than a wave, as Einstein

had done. He assumed that each quantum energy state could be occupied by any number

of photons, and thus derived Bose statistics [35]. After Bose’s findings were rejected by

the Philosophical Magazine, he sent them to Einstein, asking him to translate them

to German and publish them in Zeitschrift für Physik [31]. Einstein extended Bose’s

quantum statistics for photons to a gas of indistinguishable particles. As the number of

particles in such a system is conserved, Einstein had thus predicted a new type of phase

transition at low temperatures, which came to be known as Bose-Einstein condensation

[18, 19].

Figure 2.1: Criterion for Bose-Einstein condensation. At high temperatures, a weakly
interacting gas can be treated as a system of ”billiard balls.” In a simpli-
fied quantum description, the atoms can be regarded as wavepackets with
an extension of their de Broglie wavelength λdB. At the BEC transition
temperature, λdB becomes comparable to the distance between atoms, and
a Bose-Einstein condensate forms. As the temperature approaches zero, the
thermal cloud disappears, leaving a pure Bose condensate. Figure from [29].
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2 Cold Bosons Interacting on a Lattice

Figure 2.2: An illustration of op-
tical molasses using
six interfering lasers
[38].

Einstein postulated that, like the photons described in Bose’s paper, integer spin

(bosonic) atoms do not obey the Pauli exclusion principle, thus allowing an arbitrary

number of identical bosons to pile up in the same quantum state. Einstein further spec-

ulated that when a cloud of bosons is cooled below a critical temperature, Tc, the atoms

will condense down to the lowest energy quantum state. During this cooling process,

the de Broglie wavelength λdB =
(
2π!2/kBmT

)1/2 grows and thus the wavefunctions of

the atoms smear and eventually overlap. This allows the wavefunction which describes

the whole cloud of N bosons to reduce to a product of N identical single-particle ground

state wavefunctions [52]. This process is illustrated in Fig. 2.1.

Though predicted in 1925, it was not until seventy years later that Bose-Einstein

condensation was experimentally realized. The first two groups to observe an ”ideal”

BEC were the Wieman/Cornell group at the University of Colorado [3] and the Ketterle

group at Massachusetts Instiute for Technology [17]. Although creating a BEC may

seem trivial - that is, making a cloud of bosons as cold as possible - in practice it proved

to be quite difficult. Two substantial obstacles stood in the way of achieving a BEC. The

first hinderance was that researchers had to ensure that as they lowered the temperature

of the atom cloud, the gas did not transition to the more familiar phases: liquid and

solid. This more conventional condensation can only be avoided at very low densities

[29]. Thus researchers had to make certain that they were working with atoms which

could be cooled to a BEC.
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2 Cold Bosons Interacting on a Lattice

The second obstacle to realizing the BEC was figuring out how to trap and cool the

atom cloud. Each time researchers got close to achieving a BEC, they ran into more

technical difficulties. It was only in the 1980s that a breakthrough was made in laser

cooling techniques by W.D. Phillips, S. Chu, and C. Cohen-Tannoudji, all of whom were

awarded the Nobel Prize [13]. The laser cooling technique is based on the use of the

Doppler effect. Counter propagating lasers, which are tuned to a frequency just below

the resonance frequency of the atoms in the cloud, are set up to create a standing wave.

The cloud of atoms is placed in this standing wave and at low intensities the atoms feel

opposing forces from the lasers. These slow the atoms down (i.e. cool them) [14]. This

technique is known as ”optical molasses” (see Fig. 2.2). The problem with laser cooling

is that the lowest reachable temperature is limited by the energy of a photon. Thus,

while laser cooling can bring the atomic cloud down to the order of a few microkelvin,

this is still too ’hot’ to create a BEC [14]. Thus, a secondary cooling technique needed

to be utilized.

Figure 2.3: An illustration of evaporative cooling. (a) Atoms cooled via optical molasses
are placed in trap. (b) Sides of trap are lowered to allow higher energy atoms
to escape, leaving lower energy atoms behind. (c) After critical temperature
Tc is achieved, the boson gas collapses into a Bose-Einstein condensate.

In the early 1980s, efforts were being made to Bose condense hydrogen atoms. They

went through a two-step cooling process: (i) a dilution refrigerator and (ii) a magnetic

trap with evaporative cooling. These experiments came very close to achieving BEC,

but were hampered by the tendency of the atoms to recombine to form molecules [53].
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2 Cold Bosons Interacting on a Lattice

(a)

(b)

Figure 2.4: Observation of Bose-Einstein condensation by absorption imaging. Shown
is absorption vs two spatial dimensions. The Bose-Einstein condensate is
characterized by its slow expansion observed after 6 ms time of flight The
left picture shows an expanding clouded cooled to just about the transition
point; middle: just after the condensate appeared; right: after further evap-
orative cooling has left an almost pure condensate. (a) The total number
of atoms at the phase transition is about 7 × 105, the temperature at the
transition point is 2 µK. Figure from [29]. (b) The circular pattern of the
noncondensate fraction (mostly yellow and green) is an indication that the
velocity distribution is isotropic, consistent with thermal equilibrium. The
condensate fraction (mostly blue and white) is elliptical, indicative that it is
highly nonthermal distribution. The elliptical pattern is in fact an image of
a single, macroscopically occupied quantum wavefunction. The field of view
of each image is 200 µm by 270 µm. The observed horizontal width of the
condensate is broadened by the experimental resolution. Figure from [3].

Wiemann/Cornell and Ketterle were able to achieve BEC because, rather than using

either just laser cooling or just evaporative cooling, they combined them. They begin by

using optical molasses to cool the atom cloud and then move the pre-cooled atom cloud

into a magnetic trap [37]. Next, the trap depth is reduced, allowing the more energetic
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2 Cold Bosons Interacting on a Lattice

(i.e. hotter) atoms to escape, while the colder atoms stay behind. The remaining atoms

rethermalize and then the trap depth is reduced again. This is repeated until the atom

cloud reaches 500nK to 2 µK, at which point, the cloud collapses into a Bose-Einstein

condensate [29] (See Fig. 2.3).2 Thus, the University of Colorado and MIT groups were

able to realize BEC (See Fig. 2.4).

It is worth noting the elliptical shape of the velocity distribution in Fig. 2.4b. In

order to show that they had, indeed, achieved Bose-Einstein condensation, the Wie-

mann/Cornell and Ketterle groups needed to create a magnetic trap which had an el-

liptical horizontal cross section. Since the Heisenberg uncertainty principle states that

we cannot simultaneously know precisely where a particle is and how fast it is going,

∆p∆x ≥ !
2 , we know that if we narrow down where the particle is spatially, our velocity

distribution will spread, especially when in the ground state. Thus, by making the trap

elliptical, the experimenters were able to observe when the gas fell into the ground state

by the appearance of the elliptical velocity spread.

2.2 Optical Lattices

Since the BEC was achieved, many experimental developments have deepened our un-

derstanding of fundamental aspects of quantum physics. It simultaneously has allowed

us to investigate complicated theoretical scenarios with potential technological applica-

tions. The most fascinating of these experimental achievements was the realization of

Bose-Einstein condensation (BEC) of ultra-cold atoms in optical lattices (OL), which

has been suggested as a potential building block for quantum information processing. At

the same time the precise tailoring and manipulation of OLs has allowed us to investigate

complex solid state phenomena, such as the Mott-Insulator to superfluid transition, the

Josephson effect, the atom blockade phenomenon in quantum-dot-like potentials, Ander-

son localization, and Bose-Glass transitions. In fact, it is anticipated that the emerging
2An applet which provides a visual understanding of evaporative cooling is available at: http://
www.colorado.edu/physics/2000/applets/bec.html. Last accessed: 2009-04-23. Applets
demonstrating optical molasses and other steps in the experimental process also available here.
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2 Cold Bosons Interacting on a Lattice

field of atomtronics will be able to provide much more powerful devices than the current

solid-state ones, in which imperfections and decoherence quickly destroy the delicate

quantum effects (see Ref. [37] and references therein).

During research into laser cooling techniques, it was found that the interfering lasers

created an egg carton-like potential [37],which was then utilized to create what is known

as an optical lattice. Optical lattices function on the basis of the AC Stark effect.

The light field of the laser creates an oscillating electric field, which, in turn, induces

an electrical dipole moment in each of the atoms in the BEC. An energy shift, ∆E, is

created by the interaction of electric dipole moments of the atoms and the laser’s electric

field, E(t). The energy shift is [37]

∆E = −1
2
α(ω)

〈
E2(t)

〉
(2.2)

where α is the polarizability of the atomic level which resonates at ω0. In ∆E, ω =

ω0 +&, where & is the detuning of the light field from the resonant frequency of the

atoms. The induced dipole moment, D = α(ω)E [37], will be in phase with the electric

field if the detuning is negative, i.e. ω < ω0, thus minimizing the potential where the

laser intensity is maximized. On the other hand, if the detuning is positive, i.e. ω0 < ω,

then the potential will be minimized where the laser intensity is minimized. The latter

situation is easier to control in an experimental situation and thus is preferable.

The detuning, along with the peak intensity of the laser IP , provides control over the

depth of the lattice sites V0 as [37]

V0 ∝ IP

& =
IP

ω − ω0
(2.3)

Since we are working with a BEC, particle-particle collisions are estimated to have

an energy transfer so small that none of the particles get excited into a higher energy

level; thus the system remains in the ground state. When using an optical lattice to trap

the BEC, spontaneous photon-particle scattering, i.e. photons pushing particles into a

11



2 Cold Bosons Interacting on a Lattice

Figure 2.5: A one-dimensional optical
lattice created from (a)
counter propagating laser
beams and (b) with beams
enclosing an angle. The pa-
rameters lattice depth and
lattice spacing are defined in
the text. Figure taken from
[37].

higher energy state, also needs to be taken into account and avoided. The spontaneous

scattering rate of atoms at the center of a trap is proportional to Ip

"2 [37]. Thus, a large

detuning will cause the spontaneous scattering to be negligible in comparison to the

depth of the lattice sites.

The potential created by two interfering lasers with a wavelength λL is [37]

V (x) = V0cos
2

(
2πx

λL

)
(2.4)

where λL/2 is the distance d between the two minima in the direction of the laser beam.

This relationship is illustrated in Fig. 2.5. So, the depth of the wells can be adjusted

by placing two counter propagating laser beams opposite to one another as shown in

Fig. 2.5a or by adjusting a phase difference between the two lasers by changing θ as in

Fig. 2.5b. Therefore, we can control the potential depth in addition to the detuning,

allowing us to minimize both the photon-particle and the particle-particle interactions

which would excite the system out of the ground state.

12



2 Cold Bosons Interacting on a Lattice

2.3 Bose-Hubbard Hamiltonian

The simplest non-trivial model that describes interacting bosons on a lattice of s wells

or sites, is the Bose-Hubbard Hamiltonian (BHH). Due to the low density of the gas

needed to achieve a BEC, the number of three-body collisions is negligible, allowing

us to consider only two-body scattering events, which can be described sufficiently by

s-wave scattering due to the low energies of the involved particles [15]:

Ĥ =
s∑

i=1

εin̂i +
1
2

s∑

i=1

Uin̂i(n̂i − 1)− 1
2

s∑

i,j

ki,j [b̂†i b̂j + b̂†j b̂i], (2.5)

where εi is the onsite potential at each site i and ki,j is the tunneling rate between

adjacent sites i and j. The operators n̂i = b̂†i b̂i count the number of bosons at site

i. The annihilation and creation operators, b̂i and b̂†i , obey the commutation relations

[b̂i, b̂
†
j ] = δi,j . The onsite interaction strength is represented by Ui, which, due to the

low temperatures necessary to achieve a Bose-Einstein condensate, is governed predom-

inantly by s-wave scattering. The Hamiltonian, Eq. (2.5), has two constants of motion:

the energy E and the total number of particles N =
s∑

i=1
ni. The interaction potential is

often approximated as a delta function due to the inherent low particle density of the

BEC [32]. In this approximation, the interatomic interaction strength is equal to

Ui =
4πas!2

m
(2.6)

where as is the s-wave scattering and m is the mass of the particles.

Experimentally, all three parameters, ε, U , and k can be controlled. For example, in

optical lattices, the onsite potential is directly related to the intensity of the lasers used

to create the lattice potential [32]. The interaction strength can be modified by changing

as. The s-wave scattering length can be adjusted to both negative and positive values

by applying an external magnetic, optical, radio-frequency, or electric field [48]. Finally,

the tunneling rate can be regulated by changing the depth of the lattice sites [32].

13



2 Cold Bosons Interacting on a Lattice

2.3.1 The BHH in Fock-space

The wavefunction associated with bosons trapped in a lattice potential is most easily

represented in Fock-space. The total number of particles N is

N =
s∑

i=1

ni. (2.7)

N is a constant of motion, both in the quantum and classical limits. This can be seen

for the quantum case by calculating the commutation relation between the BHH [Eq.

(2.5)] and the total number of particles [Eq. (2.7)]. Specifically, we find

∂N

∂t
=

i

!

〈[
Ĥ, N

]〉
= 0. (2.8)

In the classical limit, the Poisson bracket of the classical Hamiltonian [Eq. (2.15)] and

the total number particles is ∂N
∂t = {H, N} = 0. Hence, in the classical limit, the total

number of particles in the system is also conserved.

By using the Fock number states, |n1, n2, ..., ni, ..., ns〉, as a basis, we can easily de-

scribe the number of atoms, ni, at each site using any of the vectors spanned in the

Fock-space

{| N, 0, ..., 0︸ ︷︷ ︸
s terms

〉 , |N − 1, 1, ..., 0〉 , |N − 1, 0, 1, 0, ..., 0〉 , ..., |N − 1, 0, ..., 0, 1〉 , |N − 2, 2, 0, ..., 0〉 ,

|N − 2, 1, 1, 0, ..., 0〉 , ..., |N − 2, 0, ..., 2〉 , ..., |0, ...0, N〉} (2.9)

The raising and lowering operators act as such on the wavefunctions:

b̂i |n1, n2, ..., ni, ..., ns〉 =
√

ni |n1, n2, ..., ni − 1, ..., ns〉 (2.10)

b̂†i |n1, n2, ..., ni, ..., ns〉 =
√

ni + 1 |n1, n2, ..., ni + 1, ..., ns〉 (2.11)

One can then use this basis in order to write the BHH [Eq. (2.5)]. The dimension of
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2 Cold Bosons Interacting on a Lattice

our Hilbert space N is defined by the number of different ways our N indistinguishable

bosons can be distributed among the s different wells [4]

N =
(N + s− 1)!
N !(s− 1)!

. (2.12)

2.4 The Classical Limit of the BHH and the Discrete

Nonlinear Schrödinger Equation

Interacting bosonic systems described by the BHH have a well-defined classical limit

and these provide excellent models with which fundamental issues concerning quantum-

classical correspondence (QCC) can be investigated, both theoretically and experimen-

tally. Below we describe a method that will allow us to identify the classical limit of the

BHH. To this end, we define new raising and lowering operators:

Âi =
1√
N

b̂i; Â†
i =

1√
N

b̂†i ; ˆ̃ni =
1
N

n̂i (2.13)

With these new raising and lowering operators the BHH becomes

Ĥ

N
=

s∑

i=1

εi ˆ̃ni +
N

2

s∑

i=1

Ui ˆ̃ni(ˆ̃ni −
1
N

)− 1
2

s∑

<i,j>

ki,j [Â†
i Âj + Â†

jÂi], (2.14)

which is the energy per boson.

Assuming that the lattice is homogenous, i.e. the interatomic interactions and the

tunneling rates are the same for all sites (Ui = U and ki,j = k ), we rewrite Eq. (2.14)

such that UN stays constant as N is changed. Now when we take the limit N → ∞,

our new Hamiltonian is

H =
Ĥ

N
=

s∑

i=1

εi ˆ̃ni +
Ũ

2

s∑

i=1

ˆ̃ni ˆ̃ni −
k

2

s∑

<i,j>

[Â†
i Âj + Â†

jÂi], (2.15)

15



2 Cold Bosons Interacting on a Lattice

in which we have introduced the effective nonlinearity

Ũ = UN. (2.16)

Next, we note that the commutation relation between Âi and Â†
i goes to zero for large

N , since

[Âi, Â
†
j ] =

1
N

δi,j . (2.17)

In fact, from Eq. (2.17), we can define an effective !eff = 1/N . Additionally, we note

that since, in the limit N → ∞, the right-hand side of Eq. (2.17) goes to zero, Âi and

Â†
i become c-numbers. In this classical limit, the quantum Hamiltonian [Eq. (2.15)]

transforms into its classical counterpart:

H =
s∑

i=1

εi|Ai|2 +
Ũ

2

s∑

i=1

|Ai|4 −
k

2

s∑

i

[A∗
i Ai−1 + A∗

i−1Ai]. (2.18)

The Hamiltonian, Eq. (2.18), describes a system of s nonlinear coupled oscillators.

The generated dynamics is determined by the dimensionless ratio u = NU/k: For u →∞

the interaction term dominates and the system behaves as a set of uncoupled oscillators

while for u → 0 the kinetic term dominates. In both extremes, the classical dynamics

is integrable. For intermediate values of u (and for s > 2) chaotic motion emerges.

We thus conclude that the appropriate semiclassical limit is N → ∞ (i.e. !eff → 0),

while simultaneously keeping Ũ constant such that the underlying classical dynamics

remains unchanged. The amplitudes Ai and A∗
i are conjugate variables with respect to

the Hamiltonian, iH. The resulting canonical equations of motion read:

i
∂Al

∂t
=

∂H
∂A∗

l

; −i
∂A∗

l

∂t
=

∂H
∂Al

, (2.19)

from which we can derive the Discrete Nonlinear Schrödinger (DNLS) equation

iȦl = εlAl + Ũ |Al|2Al −
k

2
(Al−1 + Al+1). (2.20)
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2 Cold Bosons Interacting on a Lattice

The DNLS equation will allow us to solve for Al associated with the lattice poten-

tial, therefore providing a means to compare and contrast the quantum and classical

observables for the system.

2.5 Bose-Hubbard Dimer

For a two site lattice, the BHH Eq. (2.5) becomes

Ĥ = ε1n̂1 + ε2n̂2 +
U1

2
n̂1(n̂1 − 1) +

U2

2
n̂2(n̂2 − 1)− k

2
(b̂†1b̂2 + b̂†2b̂1) (2.21)

where, for sake of simplicity, we have relabeled k12 as k.

In order to do numerical calculations of the state vectors for the quantum BHH, we

need to derive the matrix form of the Hamiltonian. The Fock state for the dimer |n1, n2〉

can be rewritten via n1 + n2 = N as |n, N − n〉 ≡ |n〉. To calculate the matrix for of

the BHH, we sandwich Eq. (2.21) between two different state vectors, 〈m| Ĥ |n〉 where

m, n ∈ Z and run from 1 to N = N + 1. For the dimer, the Hamiltonian matrix in the

Fock space reads:

〈m| Ĥ |n〉 = [ε1n + ε2(N − n) + U1
2 n(n− 1) + U2

2 (N − n)(N − n− 1)]δn,m

−k
2

√
n(N − n + 1)δn,m+1 − k

2

√
(n−N)(n + 1)δn,m−1

(2.22)

In Fig. 2.6, based on Ref. [26], the calculations for the energy levels of a system of

twenty-nine particles is shown. In the limit of small coupling strength, the energy levels

are doubly degenerate. As the coupling strength is increased, the degeneracy is lifted,

beginning from the lower energy levels until the levels bifurcate into N energy levels.

The dimer model has been studied both theoretically and experimentally. One exam-

ple of experimental work will be discussed in the next section.
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2 Cold Bosons Interacting on a Lattice

Figure 2.6: The energies obtained for the Bose-Einstein condensate in a double well
potential. The onsite potentials εi = 0, the interatomic interaction strengths
U1 = U2 = U , and N = 29. For small k the energy levels come in degenerate
pairs. As the coupling strength is increased, the energy levels, beginning
with the lowest, begin to break their degeneracy.

2.6 The Heidelberg Experiment

One of the first, and most fundamental, textbook examples highlighting the differences

between quantum and classical mechanics is the tunneling of a quantum particle through

a potential barrier. It demonstrates the manifestation of the wave nature of matter.

Experimentally, such processes can be studied on a mesoscopic level. A variety of ex-

periments have been done on this topic. The most relevant experiment to our research

is the recent work of the Heidelberg group on the Josephson effect between two weakly

coupled atomic Bose-Einstein condensates in a macroscopic double well potential[1].

Although Josephson junctions have been realized in other experimental set-ups, such

as superconductors separated by a thin insulator [33] or in super fluid helium stored

in two reservoirs connected by nanoscopic apertures [40, 50], Oberthaler’s system was

the first in which the nonlinear interatomic interactions played an essential role in the

dynamics. The nonlinearity revealed new dynamical behaviors: when the atom popula-
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2 Cold Bosons Interacting on a Lattice

Figure 2.7: Observation of tunneling dy-
namics of two weakly linked
Bose-Einstein condensates in a
symmetric double well potential
as indicated in the schematics.
The time evolution of the pop-
ulation of the left and right po-
tential well is directly visible in
the absorption images (19.4 µm
10.2 µm). The distance between
the two wavepackets is increased
to 6.7 µm for imaging. (a)
Josephson oscillations are ob-
served when the initial popula-
tion difference is chosen to be
below the critical value zc. (b)
In the case of an initial popula-
tion difference greater than the
critical value the population in
the potential minima is nearly
stationary. This phenomenon is
known as macroscopic quantum
self-trapping. Figure taken from
[38].

tion imbalance between the two wells was below a critical value, Josephson oscillations

were predicted and observed, as in Fig. 2.7a; while when the population imbalance was

above the critical value, the Josephson oscillations were hindered, and thus self-trapping

behavior was predicted and observed, as shown in Fig. 2.7b.

In this experiment the Heidelberg group used a 87Rb BEC. Laser cooling techniques as

discussed in §2.2 were used with 811 nm wavelength lasers to achieve a BEC of 1150±150

atoms in a double well potential with final trap frequencies of ωx = 2π×90(1)Hz, ωy =

2π×66(1)Hz, and ωz = 2π×90(1)Hz (which give the harmonic oscillation frequency of

an atom trapped inside the lattice well). Gravity is acting in the y-direction. The lasers

were then adjusted to increase the depth of the wells in the x-direction to 2π×412(20)Hz.

They were crossed at a relative angle of 9° so that their interference pattern would

create a periodic potential with strong harmonic confinement, thus producing an effective
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2 Cold Bosons Interacting on a Lattice

double well potential with a barrier height of 2π× 263(20)Hz and a separation of 4.4(2)

µm as in Fig. 2.7.

The initial preparation of the population imbalance is achieved by shifting the relative

angle of the laser via a piezo actuated mirror mount to create an asymmetrical potential.

The BEC is then loaded into the asymmetrical double well and the laser is adjusted to

recreate a symmetrical potential. Since the BEC will seek the lowest possible energy,

the larger the degree of asymmetry of the double well, the higher the population will

be in the lower well. Thus, a greater degree of asymmetry is used to achieve self-

trapping than to realize Josephson oscillations (see top frames of Fig. 2.7). To initiate

Josephson oscillations, the asymmetrical double well is nonadiabatically converted to

a symmetrical double well potential, so that the dynamics does not begin before the

double well has been symmetrized. The self-trapping regime does not necessitate such

a fast transformation of the potential, since its states evolve very slowly. Thus, it was

possible to create any initial population difference with a standard deviation of 0.06. In

the Josephson Junction (JJ) regime, the small inter-well separation allows particles to

achieve a tunneling time on the order of 40 ms (as can be seen in Fig.2.7a). This must be

contrasted with the tunneling time of past realizations of BECs in double well potentials

[51, 44], which is on the order of thousands of seconds. As a consequence of the shorter

time scale, Oberthaler and his group were the first to make direct observations of the

nonlinear dynamics in a single bosonic Josephson junction. Furthermore, it is important

to note that the tunneling time of 40 ms observed in the 87Rb Bose-Einstein condensate

in the JJ regime is much shorter than the tunneling time of 500 ms observed in the same

system for noninteracting particles [1]. This observation, together with the appearance

of the self-trapping phenomenon observed by the Heidelberg group, clearly indicates the

importance of interatomic interactions in the tunneling process.
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3 Dynamics of the Symmetric Dimer

This chapter is dedicated to investigating the Fock space wavepacket dynamics of a BEC

trapped in a deep double well potential. To this end, we will employ time-dependent

perturbation theory for small tunneling rates between the two wells and note three im-

portant frequencies which determine the behavior of the system. We then analyze the

corresponding classical phase space. The mean-field approach allows us to distinguish

three regimes: Josephson oscillations (large coupling), the self-trapping regime (small

couplings), and the intermediate regime where the dynamics is dictated by a stretching

mechanism imposed by a separatrix in the phase-space. We simultaneously demonstrate

that the classical methods are unable to accurately describe the quantum dynamics on

long time scales. In the final part of the chapter we explore the strength of semiclassical

considerations, showing that semiclassics can capture the essential features of the quan-

tum dynamics in all three dynamical regimes: Josephson oscillations, self-trapping, and

the transition regime. We go a step further than the existing literature in this section, as

our approach captures not only the temporal behavior of the mean atomic population,

but is actually capable of describing the whole evolving occupation statistics accurately.

3.1 Wavepacket Dynamics: Quantum Calculations

We first want to explore the quantum time evolution of the atomic population imbal-

ance. To this end we numerically integrate the time-dependent Schrödinger equation

associated with the Hamiltonian, Eq. (3.1), of the dimer. The evolving state is |ψ(t)〉

and we are interested in the evolving occupation distribution Pn(t) = |ψn(t)|2 where
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3 Dynamics of the Symmetric Dimer

the occupation probability amplitude is defined as ψn(t) = 〈n|ψ(t)〉. As stated in §2.5,

|n〉 ≡ |n, N − n〉 = |n1, n2〉. We will discuss the case in which all the bosons initially

occupy one of the two wells, i.e. n1(t = 0) = N and n2(t = 0) = 0. The corresponding

wavefunction in the Fock space is |ψ0〉 ≡ |ψ(t = 0)〉 ≡ |N, 0〉.

Now we would like to explore the dynamical scenarios which can be generated by the

Schrödinger equation for ψn(t). Namely,

i!dψn(t)
dt

= Hn,nψn(t) + Hn,n+1ψn+1(t) + Hn,n−1ψn−1(t), (3.1)

where Hn,m is given in the Fock basis by Eq. (2.22). We describe the occupation profile

for t > 0 by the probability distribution, or occupation statistics, Pn(t). In particular,

it is convenient to characterize the spreading profile using the various moments q of the

population imbalance operator 〈ψ(t)|
(
b†1b1 − b†2b2

)q
|ψ(t)〉. The literature thus far takes

a special interest in the study of the first moment of the population imbalance operator

[26, 27, 28].

We can explore the occupation statistics of our system for various values of the in-

teratomic interaction U and the coupling constant k. Two of these limits are the small

coupling regime (k - U) and the small interatomic interaction regime (U - k). In both

of these extremes, we can study the behavior of the system using perturbation theory.1

The dynamics of the small coupling limit is shown in Fig. 3.1. We report our numer-

ical results for the expectation value (i.e. first moment) of the normalized population

imbalance (n1 − n2)/N in a system of 10 bosons. One can clearly recognize the ap-

pearance of various time scales in the evolution [27]. For short times, the amplitude of

the oscillations about the initial preparation is very small (see top panel of Fig. 3.1),

which tracks with the work done in Oberthaler’s group (Fig. 2.7). However, as we move

into longer times scales, such as the middle panel of Fig. 3.1, we see that, though the

bosons remain localized, the quantum dynamics differ from the results reported by the

1For a more detailed exploration of our work on the perturbation theory, please refer to Ref [46]
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3 Dynamics of the Symmetric Dimer

Figure 3.1: The time evolution for
various time scales of a
dimer system with N =
10, k = 1, and Ũ = 1,
based on Ref. [27]. Note
that though on short
time scales, the localized
state stays trapped, on
long time scales, tunnel-
ing allows the bosons to
move from one well to
the other, thus causing
the states to oscillate be-
tween |N, 0〉 and |0, N〉.
The numerical results are
in black, while the ana-
lytical results are in or-
ange. Note that there is
good agreement between
the numerical and ana-
lytical results.

Heidelberg group. As was shown in Ref. [27], a secondary frequency begins to affect

the dynamics at this time scale, resulting, in conjunction with the high frequency of

the short time scale, in a beating that causes collapses and growths in the amplitude of

the population imbalance. This beat is a result of the splitting of the second highest

quasi-degenerate pair of energy levels. Finally, at very large time scales (see the bottom

panel of Fig. 3.1), we find that the bosons tunnel coherently between the two wells,

i.e. from state |N, 0〉 to |0, N〉 and back, a phenomenon not captured by the Heidel-

berg group at all. This behavior is due to the the fact that |N, 0〉 and |0, N〉 are not

eigenstates of the system. As a result, the initial preparation has to decompose into the

symmetric and antisymmetric combinations of localized states at each trap. The lifting

of the degeneracy of the higher-lying energy levels provides the corresponding tunneling

frequency [27].

In Ref. [27], using Nth order time-dependent perturbation theory, the normalized
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population imbalance was found to be:

n1−n2
N = −

(
cos(ω0t) + k2

8U2(N−1)2

[
N
2 [cos(ω1t)− cos(ω0t)]

+2cos(ωµt)cos(ω1
2 t)− cos(ω1t)− cos(ω0t)

]
) (3.2)

The frequencies

ωµ =
U

2

[
2(N − 1)−

(
k

U

)2 N + 1
N2 − 4N + 3

]
, (3.3)

ω1 =
U

2

[(
k

U

)N−2 (N − 1)(N − 2)
2N−4(N − 3)!

]
, (3.4)

ω0 =
U

2

[(
k

U

)N N

2N−1(N − 1)!

]
. (3.5)

are found by 1st, (N − 1)th, and Nth order perturbation theory, respectively. The

frequency ωµ represents the difference between the highest energy levels (all bosons on

site 1 or all on site 2) and the second highest energy levels (|N − 1, 1〉 or |1, N − 1〉).

It models the population imbalance for short times, as seen in the upper subfigure of

Fig. 3.1. The splitting of the second highest energy levels corresponds to ω1, which,

in conjunction with ωµ creates the beat in the middle subfigure of Fig. 3.1. Finally,

the frequency ω0 corresponds to the splitting between the highest energy levels (|N, 0〉

and |0, N〉). We also dub this frequency keff , a quantity which will utilized in Chapter

5, since it determines the movement of the entire cloud of bosons from one site to the

other. Influence of the effective tunneling rate keff can be seen the third subfigure of

Fig. 3.1.

After studying the small coupling limit, we turned to the other extreme, the small

interatomic interaction regime. We found an expression for all moments of the population

imbalance to first order. The results of this work can be seen in Fig. 3.2. As in the small

coupling limit, higher orders would allow us to better match the dynamics of the system

using perturbation theory. However, the complexity of the equations which appear in
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Figure 3.2: The first moment of
〈Jz〉 =

〈
(b†1b1 − b†2b2)/2

〉

for different interatomic
interactions, where k = 2
and N = 5. The black
line was produced by
quantum numerics. The
blue line is the first order
perturbation theory (see
Ref. [46]).

small interatomic interaction perturbation theory [46], makes exploring other analytical

methods, such as the classical analysis discussed in the next section, appealing.

3.2 Dimer in SU(2) Formalism

Without loss of generality, we can assume an even N . 1. We can rewrite the BHH,

Eq. (2.21), in the angular momentum representation or SU(2) formalism. To this end,

we define the following three operators, which obey SU(2) commutation relations

Ĵx =
1
2

(
b̂†1b̂2 + b̂†2b̂1

)
, Ĵy =

i

2

(
b̂†1b̂2 − b̂†2b̂1

)
, Ĵz =

1
2

(
b̂†1b̂1 − b̂†2b̂2

)
. (3.6)

The angular momentum operator Ĵx corresponds to the coupling term in the BHH,

and Ĵz corresponds to the population imbalance between the two wells. The Casimir
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invariant is trivially found to be

J2 =
N

2

(
N

2
+ 1

)
. (3.7)

This is analogous to an angular momentum model in which the total angular momentum

is given by j = N/2. At this point, we also introduce ε = ε2 − ε1, which is the bias

between the onsite potentials. Plugging this into the BHH, we can rewrite it as

Ĥ = UĴ2
z − εĴz − kĴx +

N

2
(ε2 + ε1) +

U

2
(
N2

2
−N) (3.8)

The constant term N(ε2 + ε1)/2 +U(N2/2−N)/2 does not contribute to the dynamics

of the system and thus will be ignored.

The dynamics of the system for finite interatomic interaction U is more conveniently

analyzed if we rewrite Eq. (3.8) with canonically conjugate variables. In this situation

we are formally looking at the dynamics of two coupled oscillators, allowing us to define

action-angle variables b̂j =
√

n̂jeiϕ̂j . By denoting the population imbalance n̂ = Ĵz and

the relative phase ϕ̂ = ϕ̂1 − ϕ̂2, Eq. (3.8) can be rewritten as

Ĥ = U n̂2 − εn̂− k

2

[√(
N

2
− n̂

) (
N

2
+ n̂ + 1

)
e−iϕ̂ +

√(
N

2
+ n̂

) (
N

2
− n̂ + 1

)
eiϕ̂

]
.

(3.9)

In the limit N . 1, we can consider that N + 2 ≈ N ; thus the Hamiltonian becomes

Ĥ ≈ U n̂2 − εn̂− k

√(
N

2
− n̂

) (
N

2
+ n̂

)
cos ϕ̂ = U n̂2 − εn̂− k

√√√√
((

N

2

)2

− n̂2

)
cos ϕ̂.

(3.10)

As we are working in SU(2) formalism, we would like to be able to visualize our phase

space topology on the Bloch sphere. The current form of the Hamiltonian, Eq. (3.10),

does not lend itself well to visualizing the global topology of the phase space, but we

can define an additional variable θ̂ such that Ĵz = n̂ = N
2 cos θ̂, while Ĵx ≈ N

2 sin θ̂ cos ϕ̂.
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Note that θ̂ and ϕ̂ do not commute. In these coordinates, the Hamiltonian becomes

H ≈ Nk

2

[u

2
cos2 θ̂ − ε

k
cos θ̂ − sin θ̂ cos ϕ̂

]
(3.11)

where we have defined the scaled parameter u = NU
k .

3.3 Classical Considerations

We begin our analysis by investigating the structure of the underlying classical phase

space of the system. First we rewrite Eq. (3.11) in terms of the fractional population

difference Sz = Jz
N/2 = n1−n2

N

H ≈ Nk

2

[u

2
S2

z −
ε

k
Sz −

√
1− S2

z cos ϕ
]
. (3.12)

Hamilton’s equations can then be written in terms of the spatial and momentum coor-

dinates ϕ and Sz

ϕ̇ =
dH

dSz
; Ṡz = −dH

dϕ
. (3.13)

Thus, the classical equations of motion are [45]

Ṡz = −
√

1− S2
z sinϕ (3.14)

ϕ̇ = uSz −
ε

k
+

Sz√
1− S2

z

cos ϕ. (3.15)

These equations of motion allow us to compare the classical evolution of the system to

the quantum results as shown in Fig. 3.3. Note that the classical calculations capture the

frequencies of the self-trapped and Josephson oscillation regimes, but not their amplitude

decay. The correspondence in the transition between the two regimes in the transition

between the two regimes, on the other hand, breaks down very quickly.
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Figure 3.3: The quantum (solid lines) and classical (dashed lines) results for the popula-
tion imbalance in three regimes. The Josephson oscillation regime (u = 0.5)
is shown in blue, while the self-trapping regime (u = 4) is shown in
black. The transition between the the Josephson oscillation and self-trapping
regimes is shown in red (u = 2).

3.3.1 Analysis of the Phase Space

We can describe the phase space of our system in multiple ways. One is using the

canonical coordinates (ϕ, n), so that the total area of the phase space is 2πN and the

Planck cell is given by 2π!. Another is using normalized coordinates (ϕ, cos θ), where

the total phase space area is 4π and the Planck cell is 4π/N . We can visualize either

of these representations on the Bloch sphere. While it can be useful to visualize three

dimensional representation of the Bloch sphere, it is convenient to use (X, Z) (or EAST-

WEST) images of the spherical phase space (see Fig. 3.4), since it allows us to see the

topology from two angles. The (X, Z) images use the definitions

Z = cos(θ) (3.16a)

X = sin(θ) ∗ ϕ for |ϕ| < π/2 (3.16b)

X = sin(θ) ∗ (ϕ− π) + π for |ϕ− π| < π/2 (3.16c)
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(a) (b) (c)

Figure 3.4: The (X, Z) images showing the contour lines of constant energy in phase
space. The view on the left of (a), (b), and (c) is the ”WEST” perspective,
while on the right is the ”EAST” perspective. (a) corresponds to u - 1,
where the dynamics is controlled by the sin θ term of Eq. (3.17) and there
are only two fixed points. (b) corresponds to u ∼ 1 and |ε| < εc, where we
see two maxima and a saddle point on the WEST side and a minimum on
the EAST side. Finally, (c) shows the phase space for u > 1 and |ε| > εc.

The bias ε and the scaled parameter u determine the topology of the phase space. We

could approach studying the energy contours by doing 2D contour plots, showing how

the energy Eq. (3.11) depends on both ϕ and θ; however, as can be readily seen in Fig.

3.4b, the interesting behavior in the phase space occurs at ϕ = 0. Thus, to study the

extrema of the energy, we can focus on this section, writing the energy as

E(θ) ∝ 1
2
u cos2 θ − ε

k
cos θ − sin θ. (3.17)

We can find the fixed points in phase space via its derivative

E′(θ) =
1
2
u sin (2θ) +

ε

k
sin θ − cos θ = 0. (3.18)

The number of solutions to Eq. (3.18) depends on u and ε. There are two fixed points

when u < 1 (see Fig. 3.4a). If u > 1, there are two cases: (i) there are two fixed

points when |ε| ≥ εc and (ii) four fixed points when |ε| < εc (as shown in Fig. 3.4b

and c, respectively). The critical bias which determines these fixed points is obtained
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by solving the equations E′(θ̂) = 0 and E′′(θ̂) = 0 simultaneously (see Appendix A):

εc = k
(
u2/3 − 1

)3/2
(3.19)

As can be seen in Fig. 3.4b, when |ε| < εc a separatrix divides the phase space into

what we dub two islands (the maxima on the WEST side) and a sea. When ε = 0, we

can calculate the fixed points analytically:

θ̂O = π/2 (3.20a)

θ̂X = −π/2 (3.20b)

θ̂1,2 = − arcsin(1/u) (3.20c)

From Fig. 3.4b, it is clear that the separatrix which encloses the θ̂1,2 islands has a

figure eight shape. When ε = 0, this separatrix is symmetric. For εc > |ε| 2= 0, the

separatrix has an asymmetric shape, in which one of the islands is smaller than the

other. In the case that |ε| ∼ εc, the separatrix no longer has a figure eight shape, as one

of the islands has vanished completely, while the other has a phase space area Ac. This

critical phase space area is the action and can be found to be [47, 34]

Ac ≈
4πεc

ku
. (3.21)

Via the standard Bohr-Sommerfield quantization relation Ac = nc!eff , we can calculate

the index of the energy contour which falls closest to the separatrix in our phase space.

The index is

nc ≈
(
1− u−2/3

)3/2
N. (3.22)
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3 Dynamics of the Symmetric Dimer

3.4 Characteristic Frequencies of the Classical Dynamics

In the case of the symmetric double well (where ε = 0), we can isolate the effect of u

on the system. Its effect can be seen most readily in the phase space of the system on

the Bloch sphere (see Fig. 3.4). We can use this u to define a few different regimes. If

u = 0, then all the trajectories of the system have the same topology and they oscillate

from one well to the other at the same frequency. In this case, if we start with a initial

preparation at the north pole of our Bloch sphere (i.e. all bosons on the first site), we

will observe Bloch oscillations, defined by the change of only Ṡz, between the two wells.

The frequency which defines the oscillations of the system for this case is ωosc = k.

As we increase u, but keep it less than 1, we find that the trajectories continue to share

the same topology, but the frequency at which they oscillate begins to depend on the

population imbalance. The value u = 1 is the critical point when a separatrix emerges

in the phase space, dividing it into three parts: two islands and a sea. If the trajectory

starts on an island, it is stuck doing small oscillations around the initial population

imbalance, while if it starts in the sea, it will undergo Bloch-Josephson oscillations (in

which both the population imbalance and ϕ change).

Since we are working with a system whose initial preparation corresponds to all par-

ticles being on the north pole, another critical value of u is u ∼ 2. Before we reach this

point, the separatrix does not touch the north pole, thus not affecting the behavior of

the system. At u ∼ 2, the separatrix just reaches the north pole (as well as the south,

in the symmetric potential), dominating the dynamics of the system.

Once u . 2, the islands created by the separatrix encircle the north and south pole,

inducing self-trapping behavior for our initial state. If in this limit, we start with a

preparation of trajectories along or near the equator (e.g. a quantum state |N/2, N/2〉),

we would observe Josephson oscillations (i.e. changing ϕ) with a frequency ωosc =
√

NUk. When we start at the north pole in the limit of u . 2, then we will see self-

trapped behavior with small oscillations of ωosc = NU (see Appendix B). To summarize
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3 Dynamics of the Symmetric Dimer

(see Fig. 3.5):

ωosc =






k for u - 1

NU for u . 1, intial condition on the poles
√

NUk for u . 1, intial condition on the equator

(3.23)

Figure 3.5: The various frequencies involved in determining the wavepacket dynamics as
they depend on U . For the sake of completeness, we have also included the
quantum frequency keff .

The work done by the Oberthaler group in Heidelberg shows that for large numbers

of bosons and short times, classical analysis works well to describe the evolution of the

population imbalance [1], as shown in Fig. 3.6. However, when we decrease the number

of bosons in our system, quantum effects become more prevalent, and the classical expec-

tations no longer match the quantum results (see Fig. 3.3). Since the quantum-classical

correspondence breaks down fairly quickly when we have few particles in our system, we

need to employ a different technique to model the behavior, which we do in §3.5.
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3 Dynamics of the Symmetric Dimer

Figure 3.6: On the left we show the results of Oberthaler’s group - the top section cor-
responds to the self-trapping regime, while the bottom corresponds to the
Josephson oscillation regime. On the right the experimental results for the
population imbalance for both regimes are plotted as dots, while the classical
predictions from Eqs. 3.14 and 3.15 are shown as black lines. In this time
scale with N ∼ 1000 particles, the classical equations of motion match the
experimental results. Figures taken from [1].

An alternative representation: The DNLS

In §2.4, we introduced the mean-field approach as a possible way to describe the dynamics

of a Bose-Einstein condensate trapped in a lattice. The equation in its discrete form is

known as the Discrete Nonlinear Schrödinger equation [Eq. (2.20)]

iȦj = εjAj + UN |Aj |2 Aj −
k

2
(Aj−1 + Aj+1) (3.24)

where Aj = √
njeiϕ. The derivation of the DNLS assumes that our wavepacket evolves

coherently - in other words, if we begin with a binomial distribution (Pn(t) = pn(1 −

p)N−n, where p is the probability to be in site 1), we will end up in a binomial distribution

at the end of our evolution. As the packet is assumed to be binomial, the dynamics is

characterized by 〈n〉 = pn. In the case that u = 0, this is in fact true, and the mean-field

description can be used to model the system. However, once the nonlinear interaction
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3 Dynamics of the Symmetric Dimer

begins to affect the dynamics, the mean-field approach only holds up until the Ehrenfest

time (∼ ln[N ]). The Ehrenfest time is not particularly long and as we increase u, the

mean-field description becomes less accurate. For example, in Fig. 3.10, the Pn(t) for

u = 2 can clearly not be captured with the mean-field binomial distribution. Therefore,

as stated earlier, we move to a different analytical technique, known as semiclassical

analysis.

3.5 Semiclassical Analysis

As we discussed previously, the corresponding classical phase space is given by the Bloch

sphere S2. In this representation, the z-component of the Bloch vector describes the

population imbalance between the two wells. The state |N, 0〉 is located at the north

pole of the Bloch sphere, while the state |0, N〉 is at the south pole. For a quantum state

with a well-defined angular momentum in the z-direction (i.e. an eigenstate of Jz), the

other two angular momentum components Jx and Jy are unknown, since they do not

commute with Jz. Thus, the azimuthal angle ϕ, also cannot be determined. Since, for a

fixed number of particles N , the dimensionality of the Hilbert space is N + 1, the total

phase space area is:

span(Jz)× span(ϕ) = (N + 1)× 2π. (3.25)

Using the notation Sx ≡ Jx/(N/2) = sin(θ) cos(ϕ), Sy ≡ Jy/(N/2) = sin(θ) sin(ϕ) and

Sz ≡ Jz/(N/2) = cos(θ), we can rewrite the above relation as

span(Sz)× span(ϕ) = 2× 2π (3.26)

which is the surface area of the sphere of unit radius. For large numbers of particles,

the difference between N and N + 1 becomes negligible and thus the effective Planck’s

constant, !eff , the area per state, is !eff = 4π/N .

Using the θ − ϕ uncertainty relation we can conclude that any Sz (or Jz state) is
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3 Dynamics of the Symmetric Dimer

Figure 3.7: Representation of generic
|n, N − n〉 state and the ini-
tial state, |N, 0〉, of the
Sz operator in the Bloch
sphere.

represented on the Bloch sphere by an annulus of width δθ = 2/(N+1) and circumference

2π. The case of an initial state Sz = 1 (where all particles are on the "left" well), is

represented by a cap of area 4π/(N + 1) (i.e. !eff ) centered at the ”north pole.” An

illustration of the state vectors on the Bloch sphere can be seen in Fig. 3.7.

We now turn to the Hamiltonian Eq. (3.11) which describes our dimer model. Within

the semiclassical approximation, a quantum state is described as a distribution in phase

space and the eigenstates are associated with stripes (i.e. lines of non-zero width) that

are stretched along the contour lines H(ϕ, θ) = E. The energy levels En of the dimer can

be determined via WKB quantization of the phase space area enclosed by the contours.

In the symmetric dimer, the contours of constant energy on the Bloch sphere (see Fig.

3.4) correspond to the eigenenergies of our system.

A classical phase space distribution P cl(Sz, ϕ; t)dSzdϕ describes the probability that

an ensemble of particles will be found in an infinitely small phase space element, dSzdϕ.

The dynamics of the Hamiltonian H is governed by the classical Liouville equation

dP cl
n (sz, ϕ; t)

dt
=

∂P cl
n (sz, ϕ; t)

∂t
+

{
P cl

n (sz, ϕ; t), HPB

}
= 0 (3.27)

where {· · · } denote the classical Poisson brackets. One can evaluate the Liouvillian flow

directly by making use of a classical phase space ensemble as shown in Fig. 3.9. To do

the semiclassical calculations, we distribute an ensemble generated by 104 phase space
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3 Dynamics of the Symmetric Dimer

points meant to mimic the quantum distribution throughout the 4π/N north pole cap.

Then we allow all the trajectories to evolve according to the classical equations, Eqs.

3.14 and 3.15.

Using the outcome of the semiclassical approach we have evaluated the population

imbalance in Fig. 3.8. The matching between the semiclassical and quantum results

contrasts sharply with the classical calculations shown in Fig. 3.3. Clearly, we see

that the semiclassical approach captures various features of the quantum evolution. In

fact, the agreement seems to persist for relatively large times and u, as opposed to the

”one-trajectory” classical calculation, which breaks down after a relatively short time.
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Figure 3.8: The temporal evolution of atomic population imbalance for N = 100 with
the same values of u as Fig. 3.3. The quantum numerical results are shown
as thick solid lines, while the semiclassical calculations are lines with circles.
The initial ensemble consists of 104 trajectories and populates the north pole
cap (as discussed in the text). Compare this to the classical results shown
in Fig. 3.3.

Inspired by the excellent agreement shown between the semiclassical calculations and

the exact quantum results in the first moment (described by the population imbalance),

shown Fig. 3.8, we would like to investigate the applicability of semiclassical methods to

36



3 Dynamics of the Symmetric Dimer

describe the full occupation distribution, Pn(t). In Fig. 3.9, we compare the semiclassical

distribution P cl
n (t) with the exact quantum mechanical results Pn(t) where we observe

a reasonably good agreement.

Looking more closely at the wavepacket dynamics for a specific time, we see that the

separatrix in the phase space crosses the north pole of the Bloch sphere. Therefore the

wavepacket stretches along it as illustrated in Fig. 3.10 (the quantum results are shown

in the top row, while the semiclassical calculations are shown in the second row). Note

that this type of dynamics cannot be properly modeled by the mean-field approximation.

The mean-field equation merely describes the Hamiltonian evolution of a single point in

phase space and therefore assumes the wavepacket looks like a binomial distribution at

any moment. Whenever the motion is in the vicinity of the separatrix, the mean-field

approach becomes inapplicable and thus Pn(t) is not likely to be binomial (see bottom

row of Fig. 3.10).
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Figure 3.9: In the left column are snapshots of the evolving phase space distribution
of an initial preparation associated with the quantum state |N, 0〉, where
N = 100. The semiclassical distribution consist of 104 trajectories which
are prepared as discussed in the text. In the right column, the semiclassical
and the quantum evolving occupation probability are shown. The classical
results are shown as blue histograms, while the quantum results are shown
as red lines. A good quantum-classical correspondence is evident even for
relatively large times. The rows correspond to different values of Ũ : (a)
u = 0.5, corresponding to the JJ regime. (b) Transition point u = 2. (c)
Self-trapping regime, u = 4.
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n/
N

(a) (b) (c)

Figure 3.10: Dynamical evolution at t = 5 of a system of N = 100 for various values
of u. The columns are for (a) u = 0.5, (b) u = 2, (c) u = 4. The top
row is the Wigner representation of the quantum state. The second row is
the classical phase space distribution obtained from the semiclassical cal-
culations. The third row are the occupation statistics for the semiclassical
(blue) and quantum (red) calculations. The semiclassical Pn(t) is found by
taking a histogram of the classical phase space distribution in the second
row. To contrast the mean-field Pn(t) with the semiclassical and quantum
for motion near the separatrix, the binomial distribution is plotted as a
black dashed line in (b).
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4 Landau-Zener Transitions

Generic systems are described by a Hamiltonian H(P,Q;x), which depends not only

on position and momentum coordinates, Q and P , but also on some parameter x. In

many systems of physical interest, x is a time-dependent parameter, i.e. x = x(t). In

these cases, the energy of the system is no longer a constant of motion and the system

"transitions" between energy levels. Such a system can be modeled using a so-called

’system-bath’ model dividing the system into a subsystem (which we want to study) and

the environment (a reservoir) [54]. As x(t) changes, the environment absorbs energy.

This irreversible change of energy is known as dissipation. The rate of driving (i.e. the

change of the time-dependent parameter) ẋ(t) and the strength of the perturbation allow

one to distinguish various regimes of quantum dissipation (see §5.1).

This chapter is principally concerned with the limit of a small ẋ(t). In this case, the

energy is dissipated via Landau-Zener transitions between the levels En(x) experiencing

avoided crossings as the driving parameter x(t) is changed (see, for example, Fig. 4.1).

When the gap ∆E in an avoided crossing is sufficiently small, there is a finite probability

of a particle making a non-adiabatic transition from one energy level to another, i.e. from

the occupied state to an unoccupied state. Clarence Zener studied this process for an

avoided crossing in a two-level system [59].

We begin this chapter by presenting some physical examples of parametric Hamil-

tonians. We will then address the Landau-Zener transition probability, including the

adiabatic approximation and the equations of motion for a time-varied system. Finally,

we will work through a two level system (a spin 1/2 particle in a driven magnetic field)
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4 Landau-Zener Transitions

Figure 4.1: This is the parametric level evolution of the Hamiltonian H versus the per-
turbation ε. The Hamiltonian is H = H0 + εB, where H0 and B are both
banded random matrices with a Gaussian distribution and a bandwith of b.
In this graph, the level evolution is done for b = 5 and system size of 10.
Courtesy of Mei Chai Zheng.

and find the Landau-Zener transition probability of this simple system.

4.1 Parametric Hamiltonians and their Applications

It is the rule, rather than the exception that physical setups are described by parametric

Hamiltonians H(Q, P ;x(t)) [55]. One example of such a system is the ’piston model’

in which a particle is trapped inside an enclosure with a moving wall. The location of

this wall, or piston, is described by the coordinate x(t). This system is illustrated in

Fig. 4.2a. If the piston is much more massive than the particle, then x(t) represents the

coordinate of a degree of freedom that is weakly perturbed by the rest of the system -

i.e. the motion of the particle in the cavity, affected by the piston, only mildly affects

x(t), the position of the piston. The piston model itself is a prototype for many systems

which can be described by parametric Hamiltonians.

The nuclei of a molecule are akin to the piston model. In this system, x(t) represents

the motion of the nuclei, thus producing a Hamiltonian which describes the changes in
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4 Landau-Zener Transitions

Figure 4.2: Various applications of parameter-dependent Hamiltonians. (a) The piston
model where x(t) represents the position of the piston. (b) A small magnetic
particle influenced by a magnetic or electric field of strength x(t). (c) The
’Liquid Drop Model’ of the nucleus, where x(t) is parametrizes the shape
of the drop. (d) A magnetic flux, x(t), passing through a conduction loop.
Figure taken in part from Ref. [23].

the electronic degrees of freedom for a fixed configuration of the nuclei. Just as in the

piston model, the mass of the nuclei is huge in comparison to that of the electrons, thus

electrons only weakly affect the coordinate x(t).

Another application of the parametric Hamiltonian is to a small metal particle being

perturbed by an electric or magnetic field, which is represented by x(t). Within the

metal particle, the electrons align in phase or out of phase with the field, thus weakly

perturbing x(t). This system is illustrated in Fig. 4.2b.

The ’liquid drop model’ of the nucleus also uses a parametric Hamiltonian. In this

model, the nucleus is represented by a drop of nuclear liquid inside which the nucleons

move. The nucleons are imagined to interact so strongly that their mean free path is

much less than the nuclear radius, thus allowing them to move almost independently

with respect to the walls of the ’liquid drop.’ In this system, x(t) could correspond to

the parameterization of the shape of the droplet, as shown in Fig. 4.2c.

The final example we will present originates in mesoscopic physics. The system is

made up of a conducting ring threaded by a magnetic flux. Here x(t) represents the
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magnetic flux through the hole in the ring [8]. The rate at which the flux changes

determines the electromotive force induced by Faraday’s Law (emf = −ẋ(t)). The

emf establishes a current around the ring which is proportional to the emf itself. The

proportionality factor is the conductance G. This is, in fact, Ohm’s law. The dissipation

energy in this system can either be accumulated by the electrons as kinetic energy or it

may be transferred to the lattice vibrations. The latter case heats up the ring. The rate

at which the ring heats up is found, via Joule’s law, to be proportional to the square of

the emf .

4.2 Adiabatic Approximation and Equations of Motion

The simplest way to understand the parametric Hamiltonian is to split it into time-

dependent and time-independent parts:

H(t) = H0 + Ht (4.1)

At each moment in time, the state vector of the system can be written in the instanta-

neous (or adiabatic) basis

|ψ(t)〉 =
∑

n

an(t) |ϕn(t)〉 (4.2)

Via Schrödinger’s Equation i! d
dt |ψ(t)〉 = H(t) |ψ(t)〉, we find

i!
[
∑

n

ȧn(t) |ϕn(t)〉+
∑

n

an(t)
d

dt
|ϕn(t)〉

]
=

∑

n

an(t)En(t) |ϕn(t)〉 . (4.3)

When we multiply from the left with 〈ϕm(t)| the sums collapse:

i!ȧm(t) = am(t)Em(t)− i!
∑

n

an(t) 〈ϕm(t)| d

dt
|ϕn(t)〉 (4.4)

In order to solve Eq. (4.4) we need to understand how to evaluate 〈ϕm(t)| d
dt |ϕn(t)〉.
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Thus, we look at the time derivative of the Schrödinger Equation multiplied by 〈ϕm(t)|

〈ϕm(t)| d

dt
[H(t) |ϕn(t)〉] = 〈ϕm(t)| d

dt
[En(t) |ϕn(t)〉] (4.5)

which allows us to find an expression for the problem term

〈ϕm(t)| d

dt
|ϕn(t)〉 =

V̇ 〈ϕm(t)| dH(t)
dV |ϕn(t)〉 − Ėnδmn

En − Em
. (4.6)

We can then plug this into Eq. (4.4), constraining the sum to n 2= m

ȧm(t) = − i

! (Em(t)−Am) am(t) + i!V̇ (t)
∑

n%=m

Fmn

En − Em
an(t) (4.7)

where Fmn = −〈ϕm(t)| d
dt |ϕn(t)〉 and Am = i! 〈ϕm(t)| d

dt |ϕm(t)〉.

As an initial step towards solving Eq. (4.7), we introduce a new constant Cm(t) such

that

am(t) = Cm(t)e−
i
!
´

Em(t′)dt′ . (4.8)

Note that the probability |am(t)| 2 remains unchanged in this transformation, i.e.

|am(t)|2 = |Cm(t)|2 . (4.9)

Substituting Eq. (4.8) into Eq. (4.7) and canceling like terms, we find

Ċm(t) =
i

!Am(t)Cm(t) + V̇ (t)
∑

n%=m

Fmn

En − Em
Cn(t)e−

i
!
´

[En(t′)−Em(t′)]dt′ . (4.10)

4.2.1 Adiabatic Condition

We recollect from the last section that |ψ(t)〉 =
∑
n

an(t) |ϕn(t)〉, where 〈ϕm(t) |ϕn(t)〉 =

0. So, for adiabaticity, an(t) cannot depend on am(t). Therefore, the energy step made
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due to the rate must be much less than the difference between the energy levels, i.e.

V̇ (t)max

∣∣∣∣
Fmn

Em − En

∣∣∣∣ - min |Em − En| . (4.11)

We can define the minimum difference in energy as ∆ = min |Em − En|. Since the

smallest gap between energy levels is of the order of k we can state

V̇ - ∆2
∣∣∣F (max)

mn

∣∣∣
∼ k2 (4.12)

which is the adiabatic condition.

When the adiabatic condition holds, Eq. (4.7) becomes

dam

dt
= − i

! (Em(t)−Am) am(t) (4.13)

enabling us to solve for am(t)

am(t) = am(0)e−
i
!
´ t
0 Em(t′)dt′e

´ t
0 V̇ (t′)〈ϕm(t′)| d

dV |ϕm(t′)〉dt′ . (4.14)

This can be simplified to

am(t) = am(0)e−
i
!
´ t
0 Em(t′)dt′e

´ Vf
V0
〈ϕm| d

dV |ϕm〉dV . (4.15)

4.2.2 Geometric Phase

In Eq. (4.15), two phases are evident. The first,

− i

!

ˆ t

0
Em(t′)dt′ (4.16)

45



4 Landau-Zener Transitions

is the dynamical phase, which generalizes the standard time evolution factor to account

for energies levels which are dependent on time. The second

γm(t) =
ˆ Vf

V0

〈ϕm|
d

dV
|ϕm〉 dV (4.17)

is the geometric, or Berry’s, phase.

When the Hamiltonian is evolved such that after some time T it returns to its original

state, then Berry’s phase becomes:

γm(T ) =
ˆ V0

V0

〈ϕm|
d

dV
|ϕm〉 dV. (4.18)

If only one parameter in the Hamiltonian changes, then Eq. (4.18) easily simplifies

to γm(T ) = 0. However, if multiple parameters are changing, then γm(t) is not so

straightforward. In this case, Berry’s phase is

γm(t) =
ˆ

−→
V f

−→
V 0

〈ϕm|∇V |ϕm〉 · d
−→
V , (4.19)

which, when
−→
V 0 =

−→
V f becomes

γm(T ) =
˛

〈ϕm|∇V |ϕm〉 · d
−→
V . (4.20)

This line integral is generally not zero. Note that while Berry’s phase is dependent on

how the multiple parameters of the Hamiltonian change, it is not dependent on how fast

they do so.
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Figure 4.3: Avoided energy level
crossings. The diabatic
states are represented by
|1〉 and |2〉, while |ϕ1〉
and |ϕ2〉 represent the
adiabatic states.

4.3 Example: A spin in a magnetic field

A spin in an external magnetic field is an illustrative example of avoided crossing be-

havior. The Hamiltonian for this system, written in the diabatic basis, is

H =
1
2
(V (t)σz + kσx) =

1
2




αt k

k −αt



 (4.21)

where V (t) = αt and k is the coupling between the two diabatic states of the system.

The energies for this system are

E±(t) = ±1
2
Ω (4.22)

where Ω =
√

(αt)2 + k2. The eigenvectors for the spin in a magnetic field become the

diabatic states and can be given by

|+〉 =
1√
2





√
1 + sinθ

√
1− sinθ



 ; |−〉 =
1√
2





√
1− sinθ

−
√

1 + sinθ



 (4.23)

where tanθ = αt/k = τ .

We want to investigate the probability of moving from |ϕ1〉 to |ϕ2〉. In order to do so,

we need to calculate the quantities Am and Fmn of Eq. (4.10). The former necessitates
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a time derivative of |+〉 and |−〉:

d

dt
|+〉 =

θ̇

2
|−〉 ; d

dt
|−〉 = − θ̇

2
|+〉 (4.24)

Thus, clearly A± = 0 in this system. To find Fmn we use dH
dV = σz/2:

Fmn = − k

2Ω
. (4.25)

Eq. (4.10) thus becomes

Ċ+ =
1
2

1
1 + τ2

C−(t)e
i
!
´

Ω(t′)dt′ . (4.26)

The integral in the dynamical phase,
´

Ω(t′)dt′, can be rewritten as

ˆ

Ω(t′)dt′ =
ˆ

k

√
(αt′)2

k
+ 1 dt′ =

k2

α

ˆ √
τ ′2 + 1 dτ ′. (4.27)

Therefore, the probability to transition to the |+〉 state from the |−〉 state is

PLZ = |a+|2 = |C+|2 =
∣∣∣∣
1
2

ˆ +∞

−∞

1
1 + τ2

C−(τ)e
i
!

k2

α

´

√
τ ′2+1 dτ ′

dτ

∣∣∣∣
2

. (4.28)

Beginning completely in the |−〉 state, we approximate C− ≈ 1 . Doing an integration

over the complex plane, we find

PLZ ≈
(π

3

)2
exp

(
−π

4
k2

α

)
. (4.29)
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Th study of wavepacket dynamics is a simple, yet vital, step towards understanding the

dynamics of a BEC loaded in a double well potential. In this chapter we move to the more

demanding situation of a driven dimer. In studying this system, we will assume that

the potential difference between the two wells is changing at a constant rate and analyze

the evolution of the occupations statistics (i.e. the evolving probability occupation)

utilizing the concepts introduced in the previous chapter. Depending on the interatomic

interaction and the rate at which we change the onsite potential difference, we find three

different dynamical scenarios: adiabatic, diabatic, and sudden. The structure of this

chapter is as follows: The first section of this chapter will introduce our motivations for

studying a BEC trapped in a driven dimer. Then we will go on to define two genres

of regimes, each containing three different dynamical scenarios. Finally, we will discuss

our theoretical and numerical results for the asymptotic occupation distribution in these

regimes, including a scaling relation we created to demonstrate the link between average

atomic population and its variance.

5.1 Motivations for Study

The overarching motivation for research on an atomic BEC in a driven double well po-

tential is the study of quantum dissipation in the presence of many-body interactions.

When a system is driven, the energy is no longer a constant of motion. Instead, the

system makes transitions between energy levels and thus the energy distribution evolves

with time. Loosely speaking, the problem of quantum dissipation is to find a theory
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for this evolution. At this point, the classical theory of dissipation is well understood.

However, the quantum theory of dissipation still has many exciting open questions. One

of the major areas of study is quantum dissipation of chaotic systems. An extension

of a global theory for the dynamics of undriven chaotic systems is expected to further

the formation of a universal (i.e. system independent) theory for quantum dissipation

[12, 55]. Recent studies have concluded that in quantum dissipation of chaotic systems

one can distinguish between four different dissipation mechanisms. These mechanisms

depend on the strength of the perturbation and the frequency of the driving. The first of

these is the adiabatic Landau-Zener regime, which corresponds to the very slow driving

of the system we discussed in Chapter 4. The second regime is the perturbative regime,

in which the driving is still small, but can be accurately described using first order

time-dependent perturbation theory. As the driving is increased further, the underlying

mechanism of dissipation is dictated by Fermi’s Golden Rule transitions between the

energy levels. This use of Fermi’s Golden Rule incorporates infinite order perturbation

theory, thus it breaks down when the system moves to the non-perturbative (fourth)

regime (where there are quantum mechanically strong perturbations) [12]. Another in-

tense area of study in quantum dissipation are the effects of many-body interactions on

the transition probability between energy levels. One of the questions asked in this con-

text is how the traditional (one-particle) Landau-Zener mechanism discussed in Chapter

4 is affected by these many-body interactions.

The driven double well potential provides a simple model to study these questions both

experimentally and theoretically. In addition, due to the mathematical and experimental

simplicity of the system, its study can allow us to understand the relation between

microscopic theories governed by quantum mechanics and macroscopic theories governed

by classical considerations. One fundamental question in the framework of quantum

dissipation is the determination of the semiclassical limit, which goes hand-in-hand with

quantum-classical correspondence (QCC) considerations.

In this respect, one can distinguish between two regimes of QCC: (i) detailed QCC,
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in which all of the moments of the observable occupation distribution correspond to

classical results, and (ii) restricted QCC, in which only some moments of the quantum

and classical occupation distributions match [49]. We are interested in studying the full

counting statistics (FCS) of the dimer (or equivalently, in our case, the full occupation

statistics, as shown in Appendix C).

Studying the FCS of an atomic BEC in a driven dimer is also beneficial to the field

of mesoscopic electronics. In electronic devices a type of noise called “shot noise” can

occur when the number of electrons is small enough to create detectable statistical noise

in the measurement. Shot noise is important to study in electronics due to the advent

of low-power circuits in an era of energy-consciousness [41]. To understand shot noise,

it is necessary to study both the average occupation number and its variance [6]. In

the study of atom currents it is desirable to control the flow to one atom at a time. As

one can infer, it is important to understand all possible sources of noise that corrupt

the atomic current, as this will allow us to optimize information transfer. The dimer

allows us to study the flow of atoms from one location to another, and therefore, to

better understand how noise can be controlled, we study the full counting statistics of

the system, both classically and quantum mechanically [10].

Early work on the fundamental questions regarding QCC in the driven dimer led to a

paradox in the commutability of the semiclassical with the adiabatic limit [25]. As we

established in the last chapter, a parametric Hamiltonian has some time-dependence

i! ∂

∂t
|ψ〉 = H(f(ε̇t)) |ψ〉 . (5.1)

In 1977, Hwang and Pechukas [25] claimed that by rescaling time τ = ε̇t and defining an

effective Planck’s constant !eff = ε̇!, one could show that the semiclassical limit ! → 0

and the adiabatic limit ε̇ → 0 were equivalent, since in both cases, !eff → 0. Berry was

the first to refute this argument. He showed that in a non-interacting system, such as

the driven dimer populated by one boson, the Landau-Zener transition PLZ is zero in the
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adiabatic limit, while there is 100% probability to transition in the semiclassical limit

[5]. Wu and Liu further expanded on Berry’s work by addressing the driven double well

potential for an N > 1 particle system with interatomic interactions [57]. They found

when the tunneling rate k is less than the interaction strength UN , the semiclassical

and adiabatic limits did not match up for slow rates. However, when k > UN , the

PLZ match for both the quantized and classical model when ε̇ → 0. The difference

between these two regimes will be discussed in §5.4. The final step, which would close

the chapter on this controversy would be an experimental test of the commutability

between the semiclassical and adiabatic limits.

As a result of these motivations, work began on the driven dimer in the first two

regimes of quantum dissipation - the adiabatic and perturbative regimes. In contrast

to our work, up until the present, all of the literature uses the mean-field approach to

analyze the system. This work is discussed in the next section.

5.2 Mean-field Dynamics and Nonlinear Landau-Zener

Tunneling

For small driving rates, the transport between levels is dominated by LZ transitions

between energy levels engaging in avoided crossings. Thus, to understand quantum-

classical correspondence in the presence of interactions, LZ tunneling needs to be ex-

tended and investigated in the frame of mean-field theories. Due to its simplicity, the

dimer is a choice model for such an investigation [34, 56, 58]. The DNLS introduced in

§2.4 can be written in matrix form as

H =




ε + U |A1|2 −k

2

−k
2 U |A2|2



 , (5.2)

calling to mind the Hamiltonian used in the Chapter 4. To understand the dimer popu-

lated by N > 1 bosons, we need to understand how the interatomic interactions between
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the atoms affect the dynamics of the system. Thus, one can plot the energy levels for Eq.

(5.2) with and without interatomic interactions, as shown in Fig. 5.1. When U < k, the

nonlinear eigenvalue problem Eq. (5.2) has two eigenvalues. Conversely, it has four when

U > k, creating a loop structure in the energy levels when |ε| < εc.1 The parametric

evolution of the classical levels is shown for both cases in Fig. 5.1. The loop structure

in the U > k case creates an interesting phenomenon - the breakdown of adiabatic evo-

lution, even in the adiabatic limit. We can, for example, begin with a state in the upper

branch of the adiabatic level in Fig. 5.1b. When we move it along the level by changing

ε very slowly, the state will follow the lower energy past point X to the terminal point

T . Once reaching this point, it can go no further unless it jumps to either the upper

or lower energy level. Since both jumps are discontinuous, we expect that there will be

nonzero probability to move to the lower level. The tunneling probability needs to be

adjusted to take into account the nonlinear interatomic interactions below and above

the critical ratio U/k = 1 [34]:

PNLZ ∼






PLZ , U = 0

exp
(
−q πk2

2ε̇

)
, U < k

1− πk2

2〈ε̇〉 U > k

(5.3)

where

q = 4
π

´

√
(k/U)2/3−1

0

(
1 + x2

)1/4
(

1
(1+x2)3/2 − U

k

)3/2
dx

〈ε̇〉 = ε̇ + 2U
(

k
2

)2 √
π
〈ε̇〉

. (5.4)

Recently, the focus shifted to the next step of comparing quantum mechanical results

with classical ones in the adiabatic limit [56]. However, these authors confined their

analysis to the first moment of the occupation probability.

1for definition of εc, see Eq. (3.19)
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Figure 5.1: Adiabatic energy levels for the
linear case (dashed lines) and
nonlinear cases (solid lines). (a)
shows the levels where U/k < 1
and (b) shows the levels where
U/k > 1. Note the loop which
appears in the lower energy level
when the critical U/k = 1 is sur-
passed. Figure taken from [34].

5.3 The Bose-Hubbard Hamiltonian Formalism

Having researched the dynamics of the dimer while holding all parameters constant, we

now wish to complicate our study by changing the onsite potential bias ε = ε2 − ε1

at some constant rate, such that ε = ε̇t. As shown in Fig. 5.2, we begin with a very

negative bias ε = −a and allow the system to evolve to a very positive bias ε = a.2 To

study the many-body Landau-Zener transitions (LZ), we want to know how the driving

rate ε̇ affects the number of remaining atoms in the first well at the end of our evolution.

We continue to use the Bose-Hubbard Hamiltonian Eq. (2.21) to describe our system.

Without loss of generality, we can assume that ε2 = 0, thus only changing the onsite

potential of the first well. With this in mind, we can rewrite the Hamiltonian as

Ĥ = −εn̂1 +
U

2
[
2

(
n̂2

1 −Nn̂1
)

+ N2 − 1
]
− k

2

(
b̂†1b̂2 + b̂†2b̂1

)
(5.5)

2“Very” positive and negative means that |a|! εc, where again εc =
“
u2/3 − 1

”3/2
.
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Figure 5.2: We drive our
dimer by begin-
ning with a very
negative bias
and ending our
evolution with
a very positive
bias.

In addition to the BHH form of the Hamiltonian, we recall the SU(2) form

Ĥ = UĴ2
z + εĴz − kĴx, (5.6)

which becomes

H ≈ Nk

2

[u

2
S2

z −
ε

k
Sz −

√
1− S2

z cos ϕ
]

(5.7)

in the semiclassical limit (N . 1). The equations of motion which are derived from the

semiclassical limit are, as introduced in Chapter 3,

Ṡz = −
√

1− S2
z sinϕ; ϕ̇ = uSz −

ε

k
+

Sz√
1− S2

z

cos ϕ. (5.8)

5.4 Dynamical Regimes

As indicated in Chapter 3, the interaction parameter u = NU/k is crucial to the dy-

namics of the dimer, since it controls the classical phase space topology. In the driven

double well potential, the driving rate ε̇ also affects the occupation statistics. Therefore,

we expect that the dynamics can be defined in a two-dimensional parameter space (u, ε̇).
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5.4.1 Interaction-dependent Regimes and the Parametric evolution of the

energy levels

In order to understand the regimes defined by the interaction parameter u, we turn to

the adiabatic evolution of the energy levels [24], in which we hold a chosen u constant

while slowly stepping through values of the bias ε, as shown in Fig. 5.3. We will first

assume that u . 1, then we will address the limit u - 1. In the former, the energies to

zeroth-order approximation (k = 0) are

En = −εn +
U

2
[
2

(
n2 −Nn

)
+ N2 − 1

]
(5.9)

where n is the occupation of the left site. As shown in Chapter 2 (see Fig. 2.6), these

energy levels vary linearly with the bias ε. However, the energy levels have different

slopes, causing them to cross. We can estimate the crossing points εn by imposing the

degeneracy condition En = En+1:

εn = U (2n−N − 1) . (5.10)

Consequently, the crossing spectrum εn occurs in the range

− U (N − 1) ≤ ε ≤ U (N − 1) . (5.11)

with an average distance between the crossings ∆ε = 2U .

The width of the avoided crossings is determined by the coupling term in the Hamil-

tonian, Eq. (2.22), and is

δεn = κn; κn =
k

2
√

n (N − n + 1). (5.12)

The widest avoided crossing occurs at n = N/2, i.e. at the center of all of the crossings,

with δεn ∼ Nk. In order for all of the avoided crossings to be distinct, the width
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Figure 5.3: The parametric energy level evolution of 10 bosons loaded in the driven
dimer for various u-regimes. (a) The mega crossing regime (u = 0.25), (b)
The gradual crossing regime (u = 2.5), (c) The sequential crossing regime
(u = 250).

δε = Nk must be less than average distance ∆ε between them.

The other limit is to regard U as the perturbation, rather than k. In this case, the

width of the one-particle crossing is k and is not affected by the many-body interaction,

as long as the span NU - k. Using these criteria, we can define three different regimes

(as can be seen in Fig. 5.3)

u - 1 mega crossing regime

1 < u < N2 gradual crossing regime

u . N2 sequential crossing regime

(5.13)

In the mega crossing regime (Fig. 5.3a), all of the particles move like one huge ball

from one trap to the other. On the other extreme, in the sequential regime (Fig. 5.3c) the

bosons move one at a time from one well to the other. The transition between these two

regimes is dubbed the gradual crossing regime, as shown in Fig. 5.3b. The dynamics

in the sequential and mega crossing regimes is fairly well understood. Therefore, we

focused our studies on the intermediate regime, which combines attributes of both the

mega and sequential regimes.

57



5 Dynamics of the Driven Dimer

5.4.2 Rate-dependent Regimes

In addition to the u-dependent regimes, the rate of change of the bias defines three

dynamical scenarios: adiabatic, diabatic, and sudden.

If we are changing our bias very slowly, we are in the adiabatic regime. In this case,

we follow the uppermost energy level throughout our evolution, as shown in Fig. 5.4a.

Thus we begin, as always, with all of our bosons in the left well |N, 0〉 and end with all

of our bosons in the right well |0, N〉. The probability to stay adiabatic is determined

by the Landau-Zener transition probability discussed in Chapter 4, i.e. the probability

to remain in the highest energy level is Pad = 1− PLZ .

On the other hand, we can drive our system very rapidly, causing it to tunnel from the

highest energy level at the beginning of our evolution, to the lowest at the end (see Fig.

5.4c). We define this scenario as the sudden regime. In this case, rather than tunneling

from one site to the other, as in the adiabatic scenario, the bosons stay put; therefore

our final state is |N, 0〉.

Finally, we can drive the system at some intermediate rate, which lands us in what

we designate as the diabatic scenario, as in Fig. 5.4b. Instead of ending with all bosons

on one or the other site, in the diabatic regime the final state is more generic |n, N − n〉.

The dynamics in this regime is, as in the adiabatic case, governed by Landau-Zener

transitions. As can be seen in the energy level diagram for the gradual crossing regime

(Fig. 5.3b), the gap between the energy levels changes as we move through the avoided

crossings towards the lowest energy levels (the sea). Since these changing gaps determine

PLZ , the dynamics in diabatic scenario is not as simple to calculate as in the adiabatic

scenario.

5.5 Results

In this section we will present the outcomes of our recent investigation into the occu-

pation statistics of a BEC loaded in a driven double well potential. Our presentation
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(a) (b) (c)

Figure 5.4: Energy level schematic in the gradual crossing regime. (a), (b), and (c)
show the evolution of the system through the energy levels for the adiabatic,
diabatic, and sudden scenarios, respectively.

follows that of our recent paper, Ref. [47], very closely.

5.5.1 Numerical Results

Our simulations are based on the numerical integration of the time-dependent Schrödinger

equation

iψ̇n =
[
−εn + U

(
n2 −Nn

)]
ψn −

k

2

[√
n (n2 + 1)ψn+1 +

√
n2 (n + 1)ψn−1

]
(5.14)

where n2 = N−n and ψn(t) = 〈n|ψ(t)〉. We assume that initially all the atoms are on the

left site, i.e. |ψ(t = 0)〉 = |N, 0〉. For the numerical integration, we used a fourth order

Runge-Kutte scheme, choosing our time steps such to ensure that our norm
∑

n |ψn(t)|2

is conserved to within 10−6.

As stated earlier, the focus of our studies rests on the gradual crossing regime. In Fig.

5.5 we present a three-dimensional overview of the evolving Pn(t) for 30 bosons with u =

4.05 and a rate ε̇ = 10. Fig. 5.6a (red) shows the mean occupation probability defined

as: 〈n〉 =
∑

n |ψn(t)|2 n. While this is a global measure of the evolving occupation

statistics, the variance V ar(n) =
〈
n2

〉
− 〈n〉2 provides more refined information on

Pn(t). For an intermediate rate, placing us in the diabatic scenario, the 〈n〉 and the

V ar(n) jump suddenly at a time which corresponds to ε = 0 (see Fig. 5.6a). This first

jump occurs when the state comes across the first avoided crossing in our energy level

spectrum. The subsequent changes in 〈n〉 and V ar(n) correspond to the other avoided
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Figure 5.5: The evolution of the occupation statistics Pn(t) for u = 4.05 and ε̇ = 10.

crossings. The variance is shown in Fig. 5.6a (red). The semiclassical results for the

〈n〉 and V ar(n) are shown in black in Fig. 5.6a. We can clearly see that there is good

agreement between the semiclassical and quantum calculations, which further cements

our trust in the semiclassical approach.

However, as in the wavepacket dynamics case, our goal is to understand the full oc-

cupation statistics. Therefore, we would like to see how well the semiclassical theory

matches the quantum for Pn(t) in the driven system. In Fig. 5.6b, we show the semiclas-

sical and quantum results for Pn(t) for three distinct times - right before the jump in 〈n〉

(corresponding, in this case, to t = 2), during the jump (corresponding to t = 2.08), and

well after the jump (corresponding to t = 4). Note that, for example, the asymmetry

of Pn(t = 2.08) cannot be captured by the binomial distribution, thus reconfirming that

the mean-field approach will not be able to model the dynamics of the driven system.

As the binomial distribution can be characterized by its spreading, we can designate

deviations from it by comparing the probability spreadings: if the spreading of Pn(t) is

smaller/larger than that of the mean-field, we refer to it as sub-/super-binomial. We also

note that any deviations from the binomial distribution are induced by the interatomic
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Figure 5.6: (a) Asymptotic evolution of 〈n〉 and V ar(n) for the semiclassical and quan-
tum methods. (b) Occupation statistics (semiclassical and quantum) for just
before the drop in 〈n〉 (t = 2), during the drop (t = 2.08), and long after the
drop (t = 4).

interactions in our system.

Next, we address the effect of separatrix motion on Pn(t) in the bias-sweep scenario.

As we vary ε, the separatrix changes. Note that this separatrix motion cannot be

avoided: For ε < −εc the wavepacket is localized in the upper level. When ε = −εc,

the separatrix emerges. As long as −εc < ε < 0 the wavepacket remains trapped

on top of the big island, which gradually shrinks. When ε becomes larger than zero,

the wavepacket can partially tunnel out from the shrinking island to the levels of the

expanding island. When ε = εc, the shrinking island disappears and the remaining

part of the wavepacket is squeezed out along the n = nc contour. We observe that the

stretching along the separatrix during the nonlinear LZ transition is accompanied by

narrowing in the transverse direction. This leads to a sub-binomial distribution Pn(t)

at the end of the sweep.

A summary of our numerical results for the asymptotic mean occupation 〈n〉 and

variance V ar(n) are shown in Fig. 5.7. We also plot the participation number PN ,

which is another measure of the spreading of Pn(t). The participation number is defined
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Figure 5.7: (a) Parametric evolution of the adiabatic energy levels versus the changing
bias for N = 10 particles and u = 2.5. We have chosen units of time such
that k = 1. The dashed line corresponds to the level nc = 4. (b) Average
occupation 〈n〉 versus the sweep rate ε̇. (c) Participation number (PN) and
V ar(n) versus ε̇. The vertical lines indicate the various adiabatic (blue) and
diabatic (orange) thresholds.

as:

PN ≡
(

∑

n

Pn(t)2
)−1

(5.15)

Both the variance and the participation number provide significantly more information

regarding the nature of the crossing process than the 〈n〉. As stated earlier, for very

slow rates, the wavepacket follows a strict adiabatic process and ends at n=0, i.e. all

particles have moved from site one to site two. For such slow rates, the system remains

in the higher energy level throughout the driving process, thus leading one to expect that

Pn(t) will have a very narrow shape (and therefore a small V ar(n)). For a moderate

sweep rate the wavepacket ends in a superposition of n=0 and n=1 states, indicated

by PN = 2. The widths of the avoided crossings of the energy levels get wider as we

move to lower energy levels (see 5.5.2). At a very slow rate, the wavepacket will stay

in the highest energy level (the adiabatic case). As we increase the rate, we will see a

spreading in Pn(t) due to a probability to be in the highest and in the second-highest
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energy levels. If we step up the rate a bit more, we will be going too fast to stay

in the highest energy level, but too slow to tunnel through the next, wider, avoided

crossing. Thus, the wavepacket ends in the second-highest energy level and its profile

is narrow. So, by looking at the oscillations in the variance and PN , we can resolve

the possibility of ending in n=1, n=2, or n=3, as well as superpositions thereof. In the

case shown in Fig. 5.7, the critical energy level is nc ≈ 4. For larger sweep rates, we

observe a qualitatively different behavior that can be described as a crossover from an

adiabatic/diabatic behavior to a sudden behavior at the peak value PN = 4. Therefore,

we can use the variance to study all three regimes: adiabatic, diabatic, and sudden.

5.5.2 Theoretical Considerations

In Fig. 5.8 we summarize the borders of the three regimes (adiabatic/diabatic/sudden)

in the two-dimensional parameter space (u, ε̇). The various borders follow from the

breakdown of the adiabatic condition Eq. (4.12) that can be written as

ε̇ - ω2
osc/κ (5.16)

where ωosc is a characteristic frequency of the unperturbed dynamics and κ is the cou-

pling parameter that determines the rate of the driven transitions.

In the strict quantum adiabatic framework, ωosc is simply the level spacing and κ is

determined by the slopes of the intersecting levels. In order to determine the adiabatic

thresholds in Fig. 5.7 we observe that for the intersection of the 0th level with the

(N − n) level the difference in slope is κ = (N − n), because asymptotically (as can be

seen from Eq. (3.17))

d(En − Em)/dE ∼ (n−m). (5.17)

In the absence of interaction (u - 1), the level spacing is ωosc = k and only nearby

levels are coupled, leading to the standard Landau-Zener adiabaticity condition ε̇ - k2.

With strong interaction there is an Nth order coupling between the n = 0 level and the
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Figure 5.8: Diagram of the (U, ε̇) regimes. In the Rabi regime |U | < k/N , we have
a crossover from adiabatic to sudden behavior. For U < −k/N , we have
a broad crossover from adiabatic gradual (or sequential [24]) behavior to
sudden behavior. For U > k/N , we have two crossovers: the first from the
quantum adiabatic to the diabatic and a second from the diabatic to the
sudden regime. For U > Nk, the distinction between the diabatic and the
sudden regime is blurred because the final state is the same (|N, 0〉).

n = N level, which allows tunneling from the top of one island to the top of the other.

As discussed in §3.1 an estimate for this coupling is [27]

keff =
NK

[2N−1(N − 1)!]

(
k

U

)N−1

. (5.18)

For a very small rate ε̇, i.e. in the adiabatic regime, the dynamics is determined by u

and is described by the parametric evolution of the energy levels in mega, gradual, and

sequential crossing regimes (see Ref. [24]).

For large N it may be impossible, in practice, to satisfy the strict adiabatic condition.

In this case, the relevant mechanism for transition, i.e. the emission to the level nc as

described in the previous section, becomes semiclassical. In the limit u . 1, the emission

to nc is governed by the oscillation frequency ωosc ∼
√
|NUK|. This frequency deter-

mines the level spacing of the lower energy levels and also describes the level spacing in

the vicinity of the separatrix, apart from some logarithmic corrections [7]. It follows that

the diabatic-sudden crossover involves the threshold condition ε̇ ∼ |NUK| as indicated

in Fig. 5.8 and in Fig. 5.7 for the specific parameters of the simulations.
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5 Dynamics of the Driven Dimer
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Figure 5.9: Sub-binomial scaling relation between 〈n〉 and V ar(n). The symbols cor-
respond to numerical data plotted via the relations Y = V ar(n)/N and
X = 〈n〉 /N . The dashed, dotted, and solid lines indicate the standard bi-
nomial scaling (u = 0) and sub-binomial scaling relation [Eq. (5.20)] for
u = 2.5 and u = 4.05, respectively. We also plot the results of semiclassical
simulations (SC) for N = 100.

5.5.3 Scaling Relation between 〈n〉 and V ar(n)

Due to the squeezing along the separatrix, the spreading of the wavepacket for an ideal-

ized diabatic process becomes negligible in the transverse direction. The diabatic-sudden

crossover is related to the non-adiabatic transitions between the remaining (N −nc) sea

levels, where nonlinear effects are negligible. It follows that the spreading can be ap-

proximately modeled by the toy Hamiltonian

H = B(t) · J, (5.19)

where J is a spin entity with jeff = (N − nc)/2, and B(t) is a field with constant

magnitude |B(t)| = Ω0 corresponding to the mean-level spacing. The sweep is like a

rotation of B(t) in the plane with some angular rate ω (see Appendix D). For such a

(linear) model the mean-field approximation is exact and therefore we suggest (due to
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5 Dynamics of the Driven Dimer

the truncation of Hilbert space) a sub-binomial rather than binomial scaling relation

between the mean and the variance of the occupation statistics:

Y = (1−X)
X − c

1− c
(5.20)

where c = nc/N and nc ≈
(
1− u−2/3

)3/2
N . Our numerical data is reported in Fig.

5.9 via the relations X = 〈n〉/N and Y = Var(N)/N together with the binomial (zero

interaction case) and sub-binomial scaling relation Eq. (5.20). We also plot the results

of semiclassical simulations to further demonstrate the accuracy of the semiclassical

method. The numerics confirm the expected u-dependent crossover from binomial to

sub-binomial statistics, where the latter, with no fitting parameters, sets a lower bound

for the variance. In addition, we can see that the agreement between the scaling and

the numerics becomes better as the number of bosons in the system is increased.

The sub-binomial scaling relation between the 〈n〉 and V ar(n) will be especially useful

to experimentalists. If an experimentalist measures the average atomic population and

its variance, the scaling relation will allow her to determine the critical energy level and

thus the interatomic interaction strength. Knowledge of the former could also be used

to further explore controlling the flow of atoms from one well to another
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6 Conclusions

We have investigated the effects of interatomic interactions on the full occupation statis-

tics of a Bose-Einstein condensate of ultra-cold atoms loaded in a driven double well

potential. Such a study provides information on fundamental questions like the applica-

bility of semiclassical analysis to describing full occupations statistics, while also giving

us some insight into the fluctuations (noise) in mesoscopic transport of many-body sys-

tems with interacting particles.

After finding that the mean-field approach focused on by the literature was not a viable

theory to describe quantum dynamics on long time scales, we explored a semiclassical

method. By studying the wavepacket dynamics of the symmetric dimer as well as the

dynamics of the driven dimer, we were able to confirm that semiclassical methods are

capable of modeling the full occupation statistics in both cases. Our approach can easily

be generalized to more demanding set-ups, such as a BEC in longer optical lattices,

where classically chaotic dynamics can be present.

Using a combination of classical, semiclassical, and quantum calculations, we were

able to create a regime diagram identifying various (U, ε̇) dynamical regimes. These

different dynamical behaviors are reflected in the structure of the asymptotic occupation

distribution Pn(t → ∞). Specifically, if |ψ〉 = |0〉, we are in the adiabatic regime; if

|ψ〉 = |N〉, we are in the sudden regime; and if |ψ〉 = |n〉, we are in the diabatic regime.

Finally, we found a sub-binomial scaling relation between the average population and

its variance. The resulting scaling depends only on u = UN/k, thus highlighting the

importance of interatomic interactions in studying noise. The scaling relation became
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6 Conclusions

more accurate in the semiclassical limit (where most current experiments operate), mak-

ing it a potentially useful tool to experimentalists. If, for example, an experimentalist

measures the 〈n〉 and V ar(n) of their system, our relation can be used to determine the

interatomic interaction. Also, if the experimentalist knows the interatomic interaction

U , then the relation can be used to estimate the level of noise (i.e. variance) present in

the transport process.

The analysis of occupation statistics is very closely related to the problem of counting

statistics in mesoscopic physics. Our results are one of the very few concrete examples

where the whole occupation statistics were analyzed as well as the effects of many-body

interactions on noise. Such a study will shed new light on the ongoing investigations of

shot noise in the frame of electronic mesoscopics systems.
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A Critical Bias

We calculate the critical bias discussed in §3.3 as follows. To remind, the energy of the
system along ϕ = 0 is

E(θ) ∝ 1
2
u cos2 θ − ε

k
cos θ − sinθ. (A.1)

Its first and second derivatives are

E′(θ) = 1
2u sin (2θ) + ε/k sin θ − cos θ (A.2a)

E′′(θ) = −u cos (2θ) + ε/k cos θ + sinθ (A.2b)

To solve for the critical bias, we need solve E′(θ) = E′′(θ) = 0. This equivalence leads
to a set of equations

sin(θ)E′′(θ)− cos(θ)E′(θ) = 1 + u sin3 θ = 0 (A.3a)
cos(θ)E′′(θ)− sin(θ)E′(θ) = ε/k − u cos3 θ = 0 (A.3b)

which lead to the solutions

θX = − arcsin

[(
1
u

)1/3
]

; εc = k
(
u2/3 − 1

)3/2
(A.4)

giving us the critical bias and the location of the WEST side saddle.
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B Classical Analysis of Wavepacket
Dynamics

In this appendix we aim to derive the frequency ωosc describing the oscillations in pop-
ulation imbalance in the self-trapping regime. We start our analysis by defining the
density matrix: ρlk = AlA∗

k. Note that ρll = AlA∗
l is the normalized number of particles

at site l; with the normalization defined such that: ρ11 + ρ22 = 1. The population
imbalance is then written as ρ = ρ11 − ρ22 = (n1 − n2)/N , where n1 and n2 are the
number of particles at sites 1 and 2, respectively, and N is the total number of atoms.
In the calculations below we assume, without loss of generality, that εi = 0.

Subtracting Eq. (2.20) times A∗
j from its complex conjugate times Al, we find that

iρ̇lj = Ũρlj(ρll − ρjj)−
k

2
(ρl+1,j − ρl,j+1 + ρl−1,j − ρl,j−1). (B.1)

Four different possible expressions can be derived from Eq. (B.1) from the cases: (a)
l = 1, j = 2, (b) l = 2, j = 1, (c) l = 1, j = 1, and (d) l = 2, j = 2:

ρ̇12 = −iŨρρ12 − ik
2ρ, for l = 1, j = 2 (a)

ρ̇21 = iŨρρ21 + ik
2ρ, for l = 2, j = 1 (b)

ρ̇11 = −ik
2 (ρ12 − ρ21), for l = 1, j = 1 (c)

ρ̇22 = ik
2 (ρ12 − ρ21), for l = 2, j = 2. (d)

(B.2)

Adding Eqs. (B.2c) and (B.2d) we find that

ρ̇11 + ρ̇22 = 0 (B.3)

indicating that ρ11 +ρ22 is a constant of motion. Therefore, since at t = 0, we know that
ρ11 + ρ22 = 1, we are able to conclude that the total number of particles is conserved
throughout the time evolution. The time derivative of the population imbalance is
derived by taking the difference between Eq. (B.2c) and Eq. (B.2d),

ρ̇ = ρ̇11 − ρ̇22 = −ik(ρ12 − ρ21). (B.4)

By adding Eq. (B.2a) and (B.2b) and substituting in for ρ̇, we find

ρ̇12 + ρ̇21 =
Ũ

2k
ρρ̇, (B.5)

which simplifies to

ρ̇12 + ρ̇21 =
Ũ

2k

dρ2

dt
. (B.6)
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B Classical Analysis of Wavepacket Dynamics

When we integrate both sides of this equation over time, we find

ρ12(t) + ρ21(t) =
Ũ

2k
[ρ2(t)− ρ2(0)] + [ρ12(0) + ρ21(0)]. (B.7)

Then we add Eq. (B.2a) and (B.2b) and again substitute in for ρ̇:

ρ̈ = −Ũkρ(ρ12 + ρ21) + (ik)2ρ. (B.8)

Keeping in mind that ρ is dependent on t, via Eq. (B.7) this becomes

ρ̈(t) = − Ũ2

2
ρ3(t) +

(
Ũ2

2
ρ2(0)− Ũk(ρ12(0) + ρ21(0)) + (ik)2

)
ρ(t), (B.9)

which is simply a differential equation,

ρ̈(t) = −Aρ3(t) + Bρ(t), (B.10)

with constants A = Ũ2/2 and B = Ũ2

2 ρ2(0)− Ũk(ρ12(0) + ρ21(0))− k2. When we start
with all bosons in the left well, B = Ũ2/2− k2.

By assigning the population imbalance a meaning analogous to the position of a par-
ticle of mass m = 1, we can interpret the right-hand side of Eq. (B.10) as a nonlinear
force F responsible for the motion of the particle. Therefore, the underlying potential
is U(ρ) = −

´

Fdρ. Integrating over ρ, this becomes

U(ρ) =
A

4
ρ4(t)− B

2
ρ2(t). (B.11)

We determine the zeroes of ∂U(ρ)
∂ρ to find the maxima and minima of U(ρ):

ρ =

{
0

±
√

B
A only if B > 0.

(B.12)

At the minima, the double derivative ∂2U(ρ)
∂ρ2 takes on the values U ′′(±

√
B/A) = 2B.

In order to capture ωosc on the north pole when u . 1 (see §3.3), we take the limit
k - UN , thus B ≈ Ũ2/2. Therefore, U ′′(±

√
B/A) = Ũ2.

Integrating Eq. (B.10) over ρ, we find

1
2

∂

∂ρ
ρ̇2 + U = c1 (B.13)

where c1 is a constant of integration. We can expand U(ρ) about ρ0 = ±
√

B/A:

1
2
ρ̇2 +

1
2

(ρ− ρ0)2 U ′′(ρ0) = c1 − U(ρ0) (B.14)

This is the equation for the harmonic oscillator with frequency ωosc = NU , which governs
the small oscillations of the population imbalance in the self-trapping regime.
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C The Equivalence of Counting and
Occupation Statistics in the Dimer

In many site systems, counting statistics and occupation statistics are not necessarily
equivalent. As the names themselves imply, occupation statistics are related to how
many bosons are on each lattice site, while counting statistics correspond to the number
of bosons which tunnel through a specific path from one site to another. Intuitively,
these quantities are analogous to one another in the two site system. In this appendix,
we will show, via the simplest model of a single particle in a double well potential, that
this is, in fact, true [10]. The single particle system has no interatomic interactions, thus
the Hamiltonian is

H =
[

ε̇t/2 k/2
k/2 −ε̇t/2

]
. (C.1)

We can define two operators which will allow us to define occupation versus counting
statistics. The first is the occupation operator N̂ , which counts all of the bosons in the
left well, and the second is the current operator Î

N̂ =
[

0 0
0 1

]
; Î =

[
0 ik

2
−ik

2 0

]
(C.2)

The current operator can be used to define a counting operator Q̂

Q̂ =
ˆ t

0
Î(t′)dt′. (C.3)

Since we are working with a dimer, the change in the number of particles on the first site
must be equal to the flow of particles between the two sites, thus using the Heisenberg
picture, we can state

d

dt
N̂(t) = Î(t). (C.4)

Utilizing this relation while integrating Eq. (C.3), we find that

Q̂ = N̂(t)− N̂(0). (C.5)

If we assume, as we do in our studies, that all of the particles begin on the left site, then
we can conclude that

〈
Q̂m

〉
=

〈
N̂m

〉
; where m=1,2. (C.6)

In other words, the first and second moments of the occupation and counting statistics
are equivalent.
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D The Diabatic-Sudden Crossover

To gain a better understanding of the diabatic-sudden crossover in an N level system,
we employ a toy Hamiltonian H = B(t) · J , where J is a spin j = N/2 entity and B(t)
is a field with constant magnitude B(t) = Ω0, corresponding to the mean level spacing.

The spin is initially prepared in the θ = 0 direction, where θ is the polar angle of
the Bloch sphere. We initiate the dynamics by making a φ = π rotation of B(t) at an
angular rate ω in the x−y plane. As a result, the spin rotates some angle Φ. In the case
that ω is very small and we are in the adiabatic limit, Φ = π. If, on the other hand, we
are in the sudden limit (ω very large), Φ =0 . For intermediate rates, we would like to
find the phase lag Θ = π − Φ, in addition to Φ itself.

Without loss of generality, we can use the spin 1/2 equations in order to find the
time-dependent orientation of the spin. The orientation is thus represented by

ψ(1) = e−iωt/2
(
c1e

iΩt/2 + c2e
−iΩt/2

)
(D.1a)

ψ(2) = Ω0e
iωt/2

(
c1

Ω + ω
eiΩt/2 − c2

Ω− ω
e−iΩt/2

)
(D.1b)

where ψn are spinors and Ω =
√

ω2 + Ω2
0. For a steady state solution with c1 = 1 and

c2 = 0, the orientation of the spin can be written as

|ψ(t)〉 =
[

ψ(1)

ψ(2)

]
= eiΩt

[
e−iωt/2 cos

(
θ

2

)
|↑〉+ eiωt/2 sin

(
θ

2

)
|↓〉

]
(D.2)

where θ = 2arctan [Ω0/(Ω + ω)]. In the adiabatic limit, where ω → 0, the angle θ = π/2.
In the sudden limit, θ = 0. At the end of the sweep of B(t), Φ =2 θ. Defining α = ω/Ω0,
we can write the phase lag as

Θ(α) = π − 4 arctan
(

1√
1 + α2 + α

)
. (D.3)

We can use the phase lag to help determine the various moments of the occupation (or
spin direction) with

〈Θ|Jk
z |Θ〉 = 〈↑| [cos(Θ)Jz + sin(Θ)Jx]k |↑〉 (D.4)

73



D The Diabatic-Sudden Crossover

Moving back to the spin N/2 case, we find

〈Jz〉 =
N

2
cos(Θ) (D.5a)

〈
J2

z

〉
=

(
N

2

)2

cos2(Θ) +
N

4
sin2(Θ). (D.5b)

Therefore the variance is 〈
J2

z

〉
− 〈Jz〉2 =

N

4
sin2(Θ). (D.6)

Plugging the expression for Θ back in, we find that the expectation value and variance
are

〈n〉 = N
α2

1 + α2
(D.7a)

V ar(n) = N
α2

(1 + α2)2
. (D.7b)

From these equations, we are able to see that there is a binomial relation between the
variance and the expectation value. Defining X = 〈n〉 /N and Y = V ar(n)/N , we can
find that Y = (1−X)X. This is the same scaling relation we would find for a BEC with
no interatomic interactions in a driven double well potential.
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