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Abstract

This thesis investigates wave dynamics and stability (against small perturbations or

interactions) of complex systems where phase transition from localized to delocalized

behavior can be achieved by changing an external or internal parameter. The main

emphasis is on: (a) the stability of dynamics (under perturbed time-reversal experi-

ments) of systems at a metal-to-insulator transition (MIT), (b) the effects of interaction-

induced nonlinearity on wavepacket dynamics of systems at a MIT and (c) the statistical

properties of current relaxation of systems where a nonlinearity-induced localization-

delocalization phase transition occurs.
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Chapter 1

Introduction

Propagation of waves in complex media (natural or man-made) is an interdisciplinary

problem of great theoretical and applied interest. It covers diverse areas ranging from

light propagation in fog or clouds, to electronic, electromagnetic and atomic-matter

waves, used to transmit energy and information, as well as to control, probe and image

our world. Despite this diversity of physical systems involving different types of waves

and various interactions among them, their common characteristics provide a framework

for understanding wave propagation and often point to new applications.

Although propagation of waves through a random medium could be naively thought of

as a simple diffusive process, interference effects give us richer phenomena and deeper

physics. A very important consequence of interference effects in a random medium is

localization, i.e. the existence of an exponentially high concentration of wave density

in a certain region in space. In fact, localization phenomena also arise from other

mechanisms, such as chaotic dynamics exhibited by deterministic systems, where the

origin of localization comes from chaos. Another source of localization is associated

with the interplay of nonlinearity and discreteness of translationally invariant lattices.

In this case, spatially localized, time-periodic solutions can be created (called discrete

breathers) and lead to halt of transport.

1



Chapter 1. Introduction 2

This work focuses on the study of wave dynamics and its stability to small perturba-

tions in complex systems, where localization phenomena play a prominent role. As

an overarching theme, we aim to search for signatures of criticality (which originate

from localized-delocalized transitions) in the framework of fidelity studies, wavepacket

dynamics, and current relaxation in complex media with absorbing boundaries. We

will establish a link between the multifractal dimension and fidelity decay at the metal-

insulator transition, as well as study the role of multifractality in the spreading of

wavepackets of critical systems in the presence of nonlinearity. Finally, in the case of

leaking nonlinear lattices, we present a novel phenomenon associated with the existence

of intrinsic localized modes – the discrete breathers – supported by such systems, namely

we find that the current decays in avalanches, whose sizes show a scale-free statistics

similar to macroscopic systems with self-organized critical behavior [4].

The structure of this thesis is as follows:

• In Chapter 2, we will briefly review background physics in the field. In particular,

we will introduce the Anderson localization and the metal-insulator transition in

disordered systems. The subjects of quantum chaos and dynamical localization

will then follow, with a discussion on Random Matrix Theory (RMT). This chapter

will end with a brief introduction to discrete breathers, which appear in discrete

nonlinear lattices.

• In Chapter 3, we will introduce the Wigner Lorentzian Random Matrix ensemble

which describes systems at criticality. We will use this ensemble to understand

the behavior of fidelity (which is a measure of quantum stability) and identify the

traces of a metal-insulator transition (MIT) in this dynamical observable [1].

• In Chapter 4, we will study wavepacket spreading in critical systems with non-

linearity. Our analysis will rely on the nonlinear Harper model, which for appro-

priate parameter values possesses a MIT. We will find the critical nonlinearity

above which the anomalous diffusion (shown by the linear system) at the tran-
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sition point is altered, and provide a simple theoretical model that explains the

emerging dynamics [2].

• Chapter 5 deals with dynamics of BECs in leaking optical lattices [3]. This system

is described by the Discrete Nonlinear Schrödinger Equation (DNLSE) with ab-

sorbing boundaries. Such a model allows discrete breathers as solutions. We will

study the role of discrete breathers in the decay process of the atomic population.

Specifically, we will show that due to their existence, the atomic population (out-

going atomic current) decays in avalanches which (for appropriate nonlinearity

strength) follow a scale-free distribution. This behavior is a clear indication of a

phase transition [4]. We will develop a physical understanding of the avalanche’s

statistics by studying the hierarchical structure of islands of a mixed phase space

in a reduced system.

• Finally, in Chapter 6 we summarize the main points of this work and discuss some

further perspectives.



Chapter 2

Overview: Systems with

Delocalization-to-Localization

Phase Transition

In low temperature crystalline solids, Bloch theory describes an electron moving in a

periodic lattice1. The wave function of the electron (called the Bloch wave) is the

product of a periodic function, which reflects the spatial periodicity of the lattice, with

a plane wave. Such wave functions are extended over the whole lattice, i.e. the spatial

probability of finding the electron is the same over the entire crystal. Since extended

states contribute to transport of electrons, they naturally lead to metallic behavior of

the medium.

However, random arrangements of atoms or molecules are the rule rather than the

exception in realistic systems. Noncrystalline materials, for example amorphous metals

and semiconductors, no longer possess lattice periodicity – hence Bloch’s theorem is no

longer valid. In fact, when the effect of disorder is dominant, the electron states are
1See any standard solid-state textbook, for e.g. Ref. [5].

4
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exponentially localized in (real) space. In such a situation, the localized states prevent

transport of electrons and lead to insulating behavior. This localization phenemonon

is called Anderson Localization [6]. In fact, depending on the dimensionality of the

system, one can induce a phase transition from a metallic to an insulating behavior

by tuning the degree or the strength of randomness. Such a phase transition is called

Metal-Insulator Transition (MIT) and was at the heart of solid state research activity

during the past 50 years.

Anderson localization is a wave interference phenomenon and as such is not unique

to electronic (quantum wave) systems. In fact, classical waves (such as microwaves or

acoustic waves) in random media can show Anderson localization as well [7]. Despite

being a generic wave phenomenon, Anderson localization is very sensitive to external

noise and one needs to preserve the phase coherence of the system in order to keep in-

tact the delicate wave interference phenomena that are responsible for the localization

phenomenon. In fact, this was why Anderson localization was not observed experimen-

tally. However, recent experimental achievements in the mesoscopic scale (where phase-

coherence is preserved) have allowed us to probe wave localization and investigate its

emergence as the degree of complexity or randomness of the potential is increased.

Until recently, it was argued that a necessary condition to observe Anderson localization

is that the medium under investigation has to possess some degree of randomness. A

surprising result came about 25 years ago from a subfield of mathematical physics now

known as quantum chaos. It was found that classically chaotic systems, upon quanti-

zation, show the same type of wave interference phenomena which lead to suppression

of classical (chaotic) diffusion and the appearance of localization albeit in energy space

(instead of configuration space where Anderson localization is observed) [8]. This local-

ization effect is known as dynamical localization in order to distinguish its dynamical

origin from that of a disordered system.

However, disorder and chaos are not the only mechanisms that lead to localization of
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wavefunctions. Another source of localization is nonlinearity [9]. It is often the case that

when interaction effects are considered, nonlinearity emerges in the equations of motion

of the system. For example, in the Holstein model the electron-phonon interaction

is introduced as a nonlinear term in the Schrödinger equation [9]. Another example

comes from optical waveguides [9,10] in which propagating media may have a nonlinear

dielectric coefficient (Kerr media [11]) while a third example is the mean-field description

of Bose-Einstein Condensates loaded in an optical lattice, in which case the interatomic

interaction translates into nonlinearity [12]. All of the systems mentioned above can

be described by a unified mathematical equation – the Discrete Nonlinear Schrödinger

Equation (DNLSE).

In this chapter, we will review the background physics of localization in disordered,

chaotic and discrete nonlinear systems. The theory of Anderson localization will be the

framework to describe disorder-induced localization whereas the kicked rotor will be a

prototype model to illustrate dynamical localization through chaos. Due to its ubiquity,

the DNLSE will be used as our representative equation of a discrete nonlinear system

to discuss nonlinearity-induced localization.

2.1 Disordered Systems and Transition from Metal to In-

sulator

In 1958, Anderson proposed that strong enough disorder can halt the propagating waves

and thus stop the diffusion of the wave through a random medium [6]. In the context

of crystalline solids, this phenomenon translates into electron localization. Prior to

Anderson’s work, it was commonly thought that scattering by a random potential would

cause Bloch waves to lose phase coherence on the length scale of the mean free path,

but the wave function was expected to stay extended throughout the sample, leading to

Ohmic behavior in the conductance. Therefore, Anderson’s proposal was revolutionary,
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contradicting what was widely believed [13].

In one dimension, it has been proven rigorously that the states of a random medium

become localized for an infinitesimal amount of disorder [14–16] and it has been shown

through one-parameter scaling theory that the same applies to two-dimensional sys-

tems [16]. For d > 2 there exists some critical disorder above which all electron states

will be localized, i.e. there exists a metal-insulator transition [6,17–23]. The formation

of localized states, taking orthogonalization with different states into account, has pre-

sumably some (not yet fully understood) similarities to bound state formation [24]. For

example, both happen in 1D and 2D, while in 3D there needs to be a critical disorder

or potential depth.

In Anderson’s paper, a perturbation theory (locator expansion) for the self-energy was

constructed, taking the uncoupled sites as a zero-th order problem and the coupling as

the perturbation. Anderson proved that for large enough values of the dimensionless

ratio between the on-site potential mismatch and the tunneling rate, this perturbation

theory converges ‘in probability’. On a heuristic level, this means that starting from an

initial site, the contributions of very distant sites fall off sufficiently strongly and thus

the wavefunctions remain localized around their center of localization.

Although Anderson’s seminal work dates back to 1958, experimental realization of such

an effect has been extremely difficult in atomic crystals. This is because electron-electron

interaction is not negligible, and phonon modes (i.e. excitations of the lattice) are

thermally excited. While the earlier work of Anderson was mainly on electronic systems,

in 1984 Sajeev John reinterpreted the Anderson localization as a pure interference effect

through multiple scattering [7]. This means that such phenomena are generic wave

phenomena. Fig. 2.1 illustrates the basic ideas of the origin of localization as a result

of interference phenomena due to multiple elastic scattering.

Subsequently any classical wave, such as an electromagnetic, acoustic or seismic wave,

in principle could be trapped in a medium, given that the random scattering event is
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Figure 2.1: Localization effect through multiple elastic scattering. Consider a light source (or

in general, any wave source) denoted as a star at position A in a disordered medium. The solid

circles represent random scatterers. A random light path that returns back to the light source

can be traced by the same path in two opposite directions. Waves that propapagate through

these two paths will accumulate the same phase and thus interfere constructively. This then

leads to a higher return probability to point A and thus reduces the mean free path because

of lower probability to propagate away from A. With more random scatterers (disorder) one

can see that light could eventually be ‘trapped’ in the sample, leading to localization. Figure

from [27].

dominant. This provides a new ground for applications of Anderson localization theory,

such as in the field of optics [7,25]. Unlike electrons, photons do not interact with each

other and thus give us a more controllable environment to study Anderson localization2.

Experimental observation of Anderson localization has been realized in very strongly

scattering semiconductor powders [27] and has recently been seen in a 2D photonic

crystal [28] (see Fig. 2.2). In addition, hopes are high in its application towards random

lasing with coherent feedback in order to amplify lasing gain [29–31].
2We point out that in optics there are other problems which are associated with absorption [26].

Recent advancement, however, have increased the Q-factor in optics experiments, thus allowing the

observation of Anderson localization.
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Figure 2.2: Anderson localization in a two-dimensional photonic lattice. In the x-y plane,

a periodic variation in the refractive index is produced by the interference pattern of three

intersecting plane waves, thus giving an ordered lattice (top left). A beam propagates through

the sample in the z-direction, where the refractive index is uniform. Disorder is introduced

through random fluctuations in the periodic refractive index (bottom left). The output profile

(right) is imaged using a CCD camera. The output beam width (white line) is plotted on top of

the image with the logarithm of intensity versus distance from the center of the beam. In the

ordered lattice, the symmetry of the lattice is seen in the CCD image(top right). As disorder

increases (from top to bottom), the output profile narrows and eventually decays exponentially

(bottom right) – a signature of Anderson localization. Figure from [32], adapted from [28].
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2.1.1 Anderson Model and Localization in 1D

We shall now proceed to prove the existence of exponentially localized states in the 1D

Anderson model. Let us consider an electron in a lattice consisting of N sites, each

site being placed a distance a apart from the other. Without loss of generality, we will

assume that a = 1. In the tight-binding limit, the Hamiltonian reads

H =
N∑
n=1

εn |n〉 〈n|+ T
n=N∑

n=1 ,m∈n.n.
(|n〉 〈m|+ |m〉 〈n|) (2.1)

where εn is the on-site energy level (we assume one energy level per site), T is the

hopping matrix element connecting site n and nearest neighbor site m, and |n〉 is the

orbital state (or the Wannier state) at site n. In the case where εn is periodic, the

eigenfunctions are the Bloch waves, yielding extended wave functions.

For a disordered system, the on-site energy εn is randomly chosen for each site n from

an uniform distribution of width W . In this case, Eq. (2.1) is called the Anderson

model.

We expand a wavefunction |Ψ〉 in the basis of |n〉 : |Ψ〉 =
∑

n ψn |n〉 and use H |Ψ〉 =

E |Ψ〉 to find the amplitude ψn associated with the eigenfunction of energy E

Eψn = εnψn + T
∑

m∈n.n.
ψm. (2.2)

We set T = 1 for the sake of convenience, and rearrange the 1D version of Eq. (2.2)

into

ψn+1 = (E − εn)ψn − ψn−1. (2.3)

These equations can be analyzed through the transfer matrix formalism by writing

Eq. (2.3) in matrix form

un+1 = Tnun, (2.4)

where

Tn =

E − εn −1

1 0

 and un =

 ψn

ψn−1.

 (2.5)
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Through successive application of Tn to an inital vector u1, we can construct the total

wavefunction associated with an energy E, i.e.

un+1 = T̃nu1 where T̃n = Tn ·Tn−1 · . . . ·T1. (2.6)

Let us define the following quantity γ, called the ‘inverse localization length’,

γ ≡ lim
n→∞

1
n

ln ||un|| > 0 (2.7)

Since T̃n is a product of unimodular random matrices, Furstenberg’s theorem [33] guar-

antees the existence of γ. For arbitrary boundary condition, this leads to exponential

growth of wavefunctions and gives solutions that are not normalizable. Seeking phys-

ical states, i.e. normalizable wavefunctions, let us take a finite long chain and start

applying the transfer matrix from both ends with arbitrary initial conditions and with

arbitary energy E. In general, the wave function will grow exponentially away from

the ends. Suitable choices for initial conditions and energies can be found so that a

wavefunction iterated from the left matches one iterated from the right at some point

n0 on the lattice [15, 34]. This yields an eigenstate which is exponentially localized at

site n0

un = Cv(n)e−|n−n0|/ξ, (2.8)

where ξ = 1/γ is the localization length, v(n) is a function that oscillates rapidly between

values of unit magnitude and C is the normalization constant. For an example of an

exponentially localized wave function, see the bottom-right inset of Fig. 2.2.

Furthermore, from the work of Thouless [35], γ is also related to an integral over the

density of states through the Thouless formula

γ(E) =
∫
dE′ ln

∣∣E − E′∣∣ ρ(E′) , (2.9)

where ρ(E′) is the density of states.
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In the special case of the Lloyd model [36], where the εn’s are drawn from a Lorentzian

distribution of width δ,

P (εi) =
δ

π
(
ε2i + δ2

) , (2.10)

the inverse localization length is exactly known and is given by [35]

cosh γ =
1
4

[√
(2 + E)2 + δ2 +

√
(2− E)2 + δ2

]
. (2.11)

2.1.2 Geometry at the Metal-Insulator Transition: Multifractality and

its Statistical Measures

Between the extrema of localized and extended systems flourishes very rich and in-

teresting physics. At the metal-insulator transition, the eigenfunctions (and in some

special cases, the energy spectra as well) are multifractal with strong fluctuations on

all scales. These states are called ‘critical states’. Physical systems that exhibit metal-

insulator transition include disordered systems in d > 2 dimensions, two-dimensional

systems in strong magnetic fields (quantum Hall transition), quasi-periodic 1D systems

(e.g. the Harper model), and periodically kicked systems with a logarithmic potential

singularity [37]. Examples of localized, critical and extended wave functions are shown

in Fig. 2.3.

Figure 2.3: Examples of localized, critical and extended wave functions (from left to right) for

a non-interacting electron moving in a random potential. Notice the fluctuations on all scales

for the critical case. Figure from [38].
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To understand the idea of wavefunction multifractality, we first need to discuss a measure

of their dimensionality. We consider an electron wavefunction ψ(~r) embedded in a

finite d-dimensional hypercube of hypervolume Ld. Then, the probability of finding the

electron in a hypercube Bi of linear size Lb = λL is given by the box probability Pi(λ)

defined by

Pi(λ) =
∫
Bi

ddr|ψ(~r)|2. (2.12)

Let us cover the system with a mesh of Ñ(Lb, L) hypercubes, each of linear size Lb. Let

N(λ) be the number of boxes with non-zero Pi(λ) for a given λ. Due to normalization

of the probability function,
∑N(λ)

i=1 Pi(λ) = 1.

In the case of a single-fractal, this is just the box-counting method with Pi(λ) = 1/N(λ)

if there is non-zero probability in the hypercube Bi, or Pi(λ) = 0 if the hyperbuce Bi

covers nothing. It is then immediate that N(λ) = λ−D with D being the box-counting

dimension corresponding to the fractal dimension of a single-fractal (see Fig. 2.4 for an

illustration of the box-counting method).

While D is useful in a single-fractal system, this quantity is not able to characterize

critical wavefunctions. Box-counting method fails to capture the details within a cover-

ing box. For a wavefunction that has fluctuations on all scales, since the wavefunction

is never exactly zero in any box, N(λ) = Ñ(λ). For example in the case of a 2D sys-

tem, N(λ) = λ−2 gives D = 2, the dimension of the embedded space – fails to extract

anything interesting about a critical wave function.

To propose a useful measure of multifractality, let us first look at the scaling behavior of

the average box probability in a single fractal. Normalization of the probability function

gives the following scaling law for the average box probability

〈P (λ)〉 ≡ 1
N(λ)

N(λ)∑
i=1

Pi(λ)⇒ 〈P (λ)〉 ∝ λD (2.13)

To capture more features of the wavefunction, let us consider the same averaging process

for higher moments of the box probability. For systems where a length scale is absent,
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Figure 2.4: Illustration of the box-counting method for 2-dimensional covering. In (a), we have

two separated points whereas in (b) a curve and in (c) an area enclosed by the solid line. We

start with a mesh of Ñ = λ−2 boxes to cover the whole L× L area. Boxes that contain part of

the ‘figure’ will be counted and yield N(λ). For (a), it is trivial to see that since N = λ−D and

N = 2 for all λ, then D = 0. As for (b), N ≈ l/Lb ∝ λ−1 where l is the length of the curve.

This gives D = 1. Similary, in (c) N ≈ A/L2
b ∝ λ−2 where A is the area. This yields D = 2.

Figure is taken from [39].
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such that there are fluctuations at all scales, we assume that the moments 〈P (λ)q〉 show

a power-law scaling but with nontrivial exponents τ(q)

〈P q(λ)〉 ∝ λD+τ(q). (2.14)

For the special case of a uniform box probability distribution such that Pi(λ) = 1/N(λ)

for all i’s, which corresponds to an extended wave function, we have

〈P q(λ)〉 ∝ N−q = λqD (2.15)

Comparing Eq. (2.14) and Eq. (2.15) yields τ(q) = (q − 1)D. Motivated by this, the

generalized dimension D(q) is defined such that the following holds

τ(q) = (q − 1)D(q). (2.16)

With this definition, the fractal dimension D is just a special case of D(q) with D(0) =

D. Indeed, one can take this as a definition of a single-fractal system, i.e. a system

which is characterized completely by one dimensionality only and thus D(q) = D =

constant for all q. In general, a multifractal wavefunction needs an infinite set of critical

exponents D(q) to fully capture all moments of the wave function and the fluctuations

on all scales.

We shall now turn to the discussion of the correlation dimension Dψ
2 ≡ D(2) because

of its many applications and appearance in a variety of physical observables, such as

the conductance distribution [40, 41], the anomalous spreading of a wave packet [42],

the spatial dispersion of the diffusion coefficient [43–45], and the anomalous scaling of

Wigner delay times [46].

Explicitly, Dψ
2 is defined through the second moment of the wavefunction, called the

inverse participation number P2

P2 =
∫
ddr|ψ(~r)|4 ∝ L−D

ψ
2 (2.17)
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where d is the dimensionality of the embedded system and L the system size. In the

case of a lattice, the inverse participation number is

P2 =
N∑
n=1

|ψn|4 (2.18)

where |ψn|2 is the probability of finding the particle at site n of a lattice with N

sites.

It is perhaps more intuitive to discuss localization through the participation ratio PR,

which is defined as

PR =
1

NP2
. (2.19)

The participation ratio gives an estimation of the fraction of sites where the wavefunction

is significantly distributed.

2.2 Quantum Chaos and Dynamical Localization

There are, in general, two types of motions in classical Hamiltonian systems: regular and

chaotic motion. Chaotic systems are often characterized by an exponential divergence

of nearby trajectories, with the Lyapunov exponent measuring the degree of divergence.

This leads to extreme sensitivity to initial conditions and rapid (exponential) loss of

correlations. For regular systems, the rate of divergence may increase polynomially with

time, but never exponentially – equivalently the Lyapunov exponent vanishes.

In a quantum system, however, the concept of trajectory is ill-defined due to the uncer-

tainty principle. The notion of sensitivity to initial conditions fails due to unitarity and

linearity of quantum evolution. Mathematically speaking, the overlap of two wavefunc-

tions |φ(t)〉 and |ψ(t)〉 remain independent of time, i.e. |〈φ(t) |ψ(t)〉|2 = |〈φ(0) |ψ(0)〉 |2

under the same Hamiltonian evolution. Hence, the ‘distance’ stays constant through-

out the evolution. There seems to be some trouble in defining chaos in quantum sys-

tems.



Chapter 2. Overview: Systems with Delocalization-to-Localization Phase Transition 17

However, the famous Bohr correspondence principle says that classical and quantum

mechanics must coincide in the limit of ~ → 0. Therefore, a quantum system with a

classically chaotic counterpart should carry fingerprints of classical chaos in the semi-

classical limit. This is exactly the goal in the study of quantum chaos: the search for

traces of classical chaos in quantum mechanical systems.

Similar to the classification of a classical Hamiltonian system based on regularity of

motion, quantum chaos has yielded criteria to distinguish between quantum systems

with different underlying classical dynamics. For example, the notion of sensitivity to

initial conditions is given an alternative perspective through the idea of sensitivity to

slight changes in the Hamiltonian that describes the dynamics – an idea which is appli-

cable in both classical and quantum systems. A measure of such sensitivity, called the

fidelity, quantifies the overlap of an evolving wavefunction with the same wavefunction

evolved under a slightly perturbed Hamiltonian. We shall introduce this quantity in

Chapter 4 more formally, but one result that is worth mentioning is the appearance

of the classical Lyapunov exponent in the quantum fidelity decay – a signature of the

underlying classical chaos [47–49].

Another route in distinguishing a chaotic quantum system from a regular one comes

from Random Matrix Theory (RMT). More elaborate discussion will be presented later

in Sec. 2.2.3 but here we would like to mention that there exist universality classes

in RMT that differentiate quantum systems with different types of motion in their

classical counterparts. For a regular quantum system, the level spacing distribution

exhibits a Poisson distribution whereas for a chaotic system, in general one finds a

Wigner distribution [50]. The main difference lies in the fact that in the former case

there exists no repulsion between the energy levels, whereas the Wigner distribution has

vanishingly low probability of having very nearby energy levels (see Fig. 2.9).

Until recently, the connection between the statistical properties of the spectrum of quan-

tum chaotic systems and RMT predictions was mainly based on numerical evidence. In
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recent years, however, the creation of user-friendly models like the quantum graphs [51]

and the advancement of semiclassical methods [52, 53] have allowed us to understand

this relation more in depth. One of the remarkable achievements was the calculation of

the two-point spectral correlation function in terms of periodic orbits and the appropri-

ate evaluation of the contribution of families (of periodic orbits) defined according to

their length spectrum [52,54].

2.2.1 Kicked Rotor as a Prototype Model of Quantum Chaos

The kicked rotor (KR) is the prototype system of quantum chaos. It is defined through

the Hamiltonian

H = H0 + V (2.20)

where H0 = p2

2I is the integrable part, which represents the kinetic energy – the ‘free mo-

tion’ – of a planar rotor with moment of inertia I and angular momentum p, whereas

V = K̄ cos θ
∑
m∈Z+

δ(t−mT ) (2.21)

is the nonlinear time-dependent perturbation in the form of a periodic kick with period

T . The Hamiltonian in Eq. (2.20) represents a free rotor that is ‘kicked’ periodically

by a gravitational field. For values of the gravitational constant K̄ larger than some

critical value K̄c, the classical dynamics is chaotic and the system absorbs energy in a

diffusive manner. A schematic illustration of the KR is given in Fig. 2.5.

Using the angle θ and the angular momentum p as conjugate pairs in the Hamiltonian,

we get the following equations of motion:

θ̇ =
∂H
∂p

=
p

I

ṗ = −∂H
∂θ

= K̄ sin θ
∑
m∈Z+

δ(t−mT ) (2.22)

We can see from the above equations that the momentum stays constant except during

the kicks. Therefore, θ varies linearly (with time) between consecutive kicks. Denoting
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Figure 2.5: A schematic illustration of the kicked rotor. There is no friction in the pivot.

The rotor rotates with angular position θ and is subjected to periodic kicks in the momentum.

Figure from [39].

the angle and the momentum immediately after the m-th kick by θm and pm, and

integrating the delta-function during the (m+ 1)-th kick, we get

θm+1 = (θm + pm T/I) modulo 2π ,

pm+1 = pm + K̄ sin θm+1. (2.23)

Carrying out the transformation pT/I → p, we then arrive at the standard map which

depends only on one parameter K = K̄T/I:

θm+1 = (θm + pm) modulo 2π ,

pm+1 = pm +K sin θm+1. (2.24)

For small K, the kicked rotor is integrable. As we increase K, KAM tori are destroyed3.

There exists a critical value K = Kc ≈ 0.9716 above which the last torus disappears
3For a discussion on KAM tori, we refer readers to standard classical chaos textbooks, such as

Ref. [39].
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Figure 2.6: Phase space of the KR for (a) K = 0.5, (b) K = 1.0 and (c) K = 5.0. These

figures plot p vs θ, both modulo 2π. Courtesy of Carl West.

and global diffusion in phase space sets in. Representative phase space plots of the KR

are shown in Fig. 2.6.

In the large K limit, one can obtain the diffusion coefficient through random-phase ap-

proximation. In this regime, since the change in momentum is of order much larger than

2π, the θm’s are uncorrelated due to the randomness in modulo (by 2π) of large numbers

(see Eq. (2.24)). Averaging over intial conditions, one finds that after t iteration

〈
(pt − p0)2

〉
= K2

t∑
m=1

〈
sin 2θm

〉
+K2

∑
m 6=m′

〈sin θm sin θm′〉 =
K2

2
t (2.25)

with diffusion coefficient

D∞ =
K2

2
. (2.26)

In contrast, the quantum kicked rotor, which we will discuss next, absorbs energy more

slowly after some ‘break time’ (see Fig. 2.7). This intriguing effect is termed dynamical

localization. Experiments have realized the quantum kicked rotor using atoms in a

pulsed optical lattice and confirmed the effect of dynamical localization [55, 56] (see

Fig. 2.7).
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Figure 2.7: Experimental realization of the quantum kicked rotor using atoms in a pulsed

optical lattice. The figure plots energy
〈

(p/2~kL)2
〉
/2 vs number of kicks N . The solid dots

are the experimental results whereas the solid line is the prediction from classical diffusion. The

dashed line is the saturation value computed from the theoretical localization length ξ. The

inset shows an experimentally observed localized state. Figure from [55].
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2.2.2 Kicked Rotor and Anderson Localization

While there exists no rigorous proof of dynamical localization of the quantum kicked

rotor, there exists a suggestive map from the quantum kicked rotor to a pseudo-Anderson

model – a variant of the Anderson model with pseudo-randomness. We shall present

this mapping following the discussion in Ref. [57].

The quantum kicked rotor is obtained by the substitution p → ~n̂ = −i~∂/∂θ, where

the commutator is [n̂, θ̂] = −i~. This leads to the Hamiltonian

Ĥ =
~2

2I
n̂2 + K̄ cos θ̂

∑
m

δ(t−mT ) . (2.27)

Carrying out the transformation t/T → t, H/(~/T )→ H, we get

Ĥ =
1
2
τ n̂2 + k cos θ̂

∑
m

δ(t−m) , (2.28)

with τ = ~T/I and k = K̄/~. The classical limit corresponds to taking k →∞ and τ →

0, but keeping kτ = K constant to preserve the underlying classical dynamics.

Since the KR Hamiltonian is periodic in time, we introduce the Floquet operator, which

is a unitary time evolution operator that transforms a wave function |ψ(θ, t)〉 from t to

t+ 1

Û |ψ(θ, t)〉 = |ψ(θ, t+ 1)〉 . (2.29)

The time t in Eq. (2.29) is the time just before a kick. In the case of the quantum KR,

the evolution operator (i.e. the Floquet operator) is4

Û = e−iH0e−iV (θ). (2.30)

where H0 = 1
2τn

2 and V (θ) = k cos θ .

Let us define the eigenstates of Û to be the quasi-energy states |ψw(θ, t)〉 with the

corresponding eigenvalues w (called the quasi-energies) satisfying the following equation
4For the sake of convenience, from now on we will drop the hat notation on operators.
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[58]

Û |ψw(θ, t)〉 = e−iw |ψw(θ, t)〉 . (2.31)

In an exact analogue with the Bloch wave in a spatial periodic lattice, due to the

temporal periodicity, the |ψw〉 (which is called the Bloch-Floquet state) can be written

as [58]

|ψw(θ, t)〉 = e−iwt |uw(θ, t)〉 (2.32)

with |uw〉 having the same periodicity as the Hamiltonian, i.e. |uw(θ, t)〉 = |uw(θ, t+ 1)〉.

We can expand any evolving function |ψ(θ, t)〉 in terms of the quasi-energy states

[58]

|ψ(θ, t)〉 =
∑
w

Aw |ψw(θ, t)〉 . (2.33)

Therefore, the dynamics are completely determined by the nature of the quasi-energy

states (or the states |uw〉) in the same way that the eigenvalues and eigenvectors of a

Hamiltonian characterize the dynamics of a system in which energy is conserved.

Next, we shall derive an equation for their projections onto the angular-momentum

states, i.e. the eigenstates of H0. Let us define |u−w〉 and |u+
w〉 as the states of |uw〉 just

before and after a kick, respectively. The corresponding quasi-energy state then reads

|ψ±w 〉 = e−iwt |u±w〉.

We now divide the problem into two parts: during two consecutive kicks and during a

particular kick. Between a kick at t = m and the consecutive one at t = m + 1, the

evolution is given by ∣∣ψ−w (θ, t = m+ 1)
〉

= e−iH0
∣∣ψ+
w (θ, t = m)

〉
, (2.34)

and thus ∣∣u−w(θ, t = m+ 1)
〉

= ei(w−H0)
∣∣u+
w(θ, t = m)

〉
. (2.35)

Projecting these states onto an angular momentum state |n〉, one obtains

u−n (t = m+ 1) = exp
[
i

(
w − 1

2
τn2

)]
u+
n (t = m) (2.36)
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with u±n (t = m) ≡ 〈n|u±w(θ, t = m)〉.

During a kick at time t = m, the state is evolved under V (θ) and the state right after

the kick is ∣∣u+
w(θ,m)

〉
= e−iV (θ)

∣∣u−w(θ,m)
〉
. (2.37)

For the sake of convenience, we introduce a unitary Hermitian operator W [57]

W (θ) = − tan (V (θ)/2) (2.38)

so that

exp [−iV (θ)] =
1 + iW (θ)
1− iW (θ)

. (2.39)

We then define

|ū(θ,m)〉 =
1
2
[∣∣u+

w(θ,m)
〉

+
∣∣u−w(θ,m)

〉]
. (2.40)

Putting Eq. (2.37), Eq. (2.39) and Eq. (2.40) together yields [57]

∣∣u+
w(θ)

〉
= |ū(θ)〉 (1 + iW (θ))∣∣u−w(θ)

〉
= |ū(θ)〉 (1− iW (θ)) (2.41)

Projecting these equations onto the angular momentum basis and after some straight-

forward manipulations, we arrive at

Eūn = Tnūn +
∑
r 6=n

Wn−rūr (2.42)

where ūn, Wn are the respective projections of ū and W onto the angular momentum

basis, E = −W0, and

Tn = tan
[

1
2

(
w − 1

2
τn2

)]
. (2.43)

Immediately, one notices the similarity of Eq. (2.42) with the Anderson model in

Eq. (2.2), if one were to interpret Tn as the diagonal on-site energy, and Wn−r as the

hopping matrix elements. However, unlike the Anderson model, the hopping term here
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is not necessarily limited to nearest-neighbors, but is in general of some finite range [50].

Furthermore, Tn is not strictly random as in the Anderson model.

From Eq. (2.27), we note that all energy spacings of the unperturbed rotor are multiples

of ~2/2I, with corresponding frequencies multiples of ω̃ = ~/2I and period multiples

of T̃ = 4πI/~. Together with the definition of τ , one then obtains τ/4π = T/T̃ . This

gives us the ratio between the period of the driving potential (i.e. the kick) T and the

natural period of the rotor T̃ . For rational values of τ/4π (i.e. τ/4π = r/q, where r and

q are integers), this is the quantum resonance case [59]. In this case, Tn is a periodic

function of period q and hence from Bloch theory, we know that the quasi-energy states

are extended in the momentum space.

For generic values of τ , where τ/π is a generic irrational number, the argument w− 1
2τn

2

of the tangent in Tn is effective modulo π. According to a theorem of Weyl’s [60],

the sequence w − 1
2τn

2 mod π is ergodic in the interval I = [0, π] and covers this

interval with uniform distribution. This means that the distribution of Tn will follow

P(Tn)dTn = dw/π. Together with dTn/dw = 1 + T 2
n , one obtains

P(Tn) =
1

π (1 + T 2
n)

. (2.44)

To push the analogue of the Anderson model further, if we replace the potential V (θ)

in the KR with

V (θ) = −2 arctan (κ cos θ − E) , (2.45)

then we obtain the Lloyd model [36], which only has nearest-neighbour hopping.

For the sake of convenience, we drop the bars on ūn and turn Eq. (2.42) into

Eun = Tnun +
1
2
κ (un+1 + un−1) (2.46)

In Fig. 2.8, we compare the numerically evaluated localization length related to Eq. (2.46)

and the theoretical results for the Lloyd model. The agreement is excellent, providing

strong evidence that in this case, pseudo-randomness (in the Tn’s) is enough to give rise

to localization.
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Figure 2.8: Two quasi-energy states for the Lloyd model. The circles are the numerical results

whereas the dashed lines are the theoretical fits calculated from the localization length of the

Lloyd model. Figure is from [57].

2.2.3 Random Matrix Theory

The spectra of simple molecules like atomic hydrogen and helium have been well under-

stood using quantum mechanics. However, the application of quantum mechanics for

heavier elements seems to be an enormously complicated task. One of the ways to study

the spectral properties of such systems is to build models with minimum information

without losing the essential physics. This is exactly the main principle behind Random

Matrix Theory (RMT).

It was Wigner who first proposed the use of random matrix ensembles to model the

extremely complicated Hamiltonian matrix of heavy nuclei [61]. A random matrix

ensemble consists of square matrices H of size n × n (eventually we want to take the

limit of n→∞), whose elements Hnm are obtained from a Gaussian distribution with

zero mean and variance 〈
|Hnm|2

〉
= 1 + δnm. (2.47)

Additional symmetry requirements on the Gaussian random matrix ensemble give rise

to the concept of universality classes. This corresponds to the classification of systems
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into those with broken/unbroken time-reversal symmetry and those with/without spin-

1/2 interaction. In matrix mechanics, this translates into invariance under orthogonal,

unitary and symplectic transformations, leading to the three commonly known Gaussian

ensembles that are of interest: the Gaussian Orthogonal Ensemble (GOE), the Gaussian

Unitary Ensemble (GUE) and the Gaussian Sympletic Ensemble (GSE)5.

The power of RMT lies on the idea of universality: if a generic quantum system falls

under one of the universality classes, certain statistical properties of the spectrum will

be described according to some universal predictions, regardless of microscopic system

details. To date, there has been a plethora of numerical and experimental evidence

supporting universality [63]. One of the successes of RMT is its correct prediction of

the distribution of the energy level spacings

Sn =
En+1 − En

∆(E)
, (2.48)

where the En’s are the ordered eigenenergies and ∆(E) is the mean level spacing. This

distribution is one of the simplest statistical quantities that is measurable in experi-

ment.

Here, we present a summary of level spacing distributions for each of the RMT ensembles

discussed above (see Appendix A for a derivation):

P (S) ∝


S1e−

π
4
S2

GOE ,

S2e−
4
π
S2

GUE ,

S4e−
64
9π
S2

GSE .

(2.49)

While the above distributions are applicable for chaotic systems, in the case of integrable

systems, one can show that P (S) follows a Poisson distribution i.e. P (S) = e−S (see

Appendix A). Figure 2.9 shows examples of level distributions of different universality

classes. The RMT cases are called the Wigner distributions. We also observe that while

integrable systems do not exhibit level repulsion, the other universality classes show

vanishing probability of finding nearby energy levels.
5In fact, in recent years 7 more ensembles were introduced (see Ref. [62]).
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Figure 2.9: Level spacing distributions for kicked tops in (a) regular motion and (b-d) chaotic

motion. The three curves on the right (b-d) correspond to different universality classes with (b)

linear (GOE), (c) quadratic (GUE) and (d) quartic (GSE) level repulsion. Figure from [50]

Not only has RMT attracted a lot of attention in the framework of quantum chaos, its

predictions could be extended to the studies of disordered systems as well [64]. In the

metallic regime, the eigenstates of these systems are extended, and the statistical prop-

erties of their spectra are quite well described by the traditional RMT ensembles [65].

In particular, the level spacing distribution is very well fitted by the Wigner distribu-

tion of the appropriate symmetry class. Deep in the localized regime, the levels become

uncorrelated leading to a Poissonian level spacing distribution and the eigenfunctions

are exponentially localized. At the MIT, the eigenfunctions are critical, exhibiting mul-

tifractal structure characterized by strong fluctuations on all scales. The eigenvalue

statistics are characterized by a new universal distribution [65, 66] and a new ensem-

ble of random matrices was recently introduced to describe such systems [67]. We will

introduce this ensemble in Chapter 3.
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2.3 Discrete Breathers and Discrete Nonlinear Schrödinger

Equation

One of the founders of nonlinear science, Stanislaw Ulam, once remarked that the use

of the term ‘nonlinear science’ was like ‘calling the bulk of zoology the study of non-

elephants’ [68]. This sharply captures the point that linear processes are usually the

exception rather than the rule. Most realistic physical systems are indeed nonlinear [68].

On the other hand, the use of lattice geometry in physics is abundant. From the textbook

example of crystalline solids in condensed matter to the recent use of optical lattices,

careful manipulation of lattice stucture often yields new physical phenomena.

We have discussed localization phenomena in the context of solid-state physics and

quantum chaos. In these cases, either disorder or chaos is needed to cause constructive

interference that leads to spatial or dynamical localization. However, in an ordered

lattice, there exist localized excitations that are due to the interplay of interaction-

induced nonlinearity and discreteness. These are the discrete breathers (DBs), also

known as intrinsic localized modes (ILMs).

A DB is a spatially localized, time-periodic, and stable excitation in extended, periodic,

discrete nonlinear systems. To understand roughly the existence of breathers, let us

consider the ‘anti-continuum limit’ [69], where we start with a set of uncoupled nonlinear

oscillators. For simplicity’s sake, let us restrict our discussion to the case of two classical

nonlinear pendula. In the case where the amplitude of oscillation is small, we are back

to the linear pendulum problem, where the period depends only on the length of the

pendulum and gravity. However, when the amplitude gets larger, the period of the

oscillation is, in general, dependent on the amplitude.

Now, we excite both pendula, so that the first pendulum is oscillating strongly relative

to the second one. In this case, most of the energy is initially concentrated in the first

oscillator. Since the frequency of a nonlinear oscillator is dependent on the amplitude,
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Figure 2.10: Experimental realization of DBs in a 2D photonic lattice, created by optical

induction in a photorefractive crystal. A second laser beam provides the input, which is centered

on a single site in the photonic lattice. The 3D intensity plots for the top figures show (a) the

input intensity, (b) the linear diffraction output in the absence of a photonic lattice, (c) the

discrete linear diffraction, induced by the photonic lattice for weak nonlinearity and (d) a DB

that appers due to large nonlinearity. The bottom figures shows a 2D transverse patterns.

Figure is taken from [71].

we can choose the frequency of the strongly oscillating pendulum to be incommensurate

with the other pendulum. When we turn on the coupling, intuition suggests that transfer

of energy from one to the other is extremely difficult or maybe even impossible. This is

the basic idea of how nonlinearity supports localized solutions like the DBs.

Since the discovery of DBs in the late 1980s, many experimental observations of the

DBs have been made in various physical systems, such as electronic and magnetic solids,

microengineered structures including Josephson junctions and optical waveguide arrays,

and laser-induced photonic crystals. Hopes are high in the applications of the DBs in

all-optical logic and switching devices, BEC systems, and biopolymers [70]. Fig. 2.10

shows an example of DBs in a photonic lattice. For a comprehensive review on DBs,

see [72].

In this work, we will investigate one of the most ubiquitous discrete nonlinear models –
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the Discrete Nonlinear Schrödinger Equation (DNLSE):

i
∂ψn
∂t

= U |ψn|2ψn + εnψn + V (ψn−1 + ψn+1). (2.50)

Indeed, the applications of the DNLSE are incredibly wide. For example, it can describe

the interaction of a quantum mechanical particle with the phonon modes [73] and ac-

count for the energy transfer in proteins [74]. It has also been used in the description

of wave motion in nonlinear optical waveguides [75] (see Appendix B). Perhaps the

most recent and exciting of its applications is in the field of Bose-Einstein condensates

(BEC) in optical lattices. The DNLSE turns out to be the classical version of the Bose-

Hubbard Hamiltonian, which describes the many-body interacting bosons loaded in a

deep optical lattice (see Apppendix C).

The existence of DBs in the DNLSE only adds to the excitement of new phenomena that

are unique to discrete nonlinear systems. It is therefore of interest to study the effect

of these localized modes on the transport properties of a DNLSE system. In Chapter 5,

we shall explore and study in depth the dynamics of the DBs in leaking optical lattices

and how they give rise to very rich and intriguing critical behavior.



Chapter 3

Quantum Stability of Critical

Systems

Although Newtonian mechanics does not preclude the possibility of reversing a process

by inverting the velocities of all particles combining a macroscopic system, our everyday

experience tell us that this is impossible. A classical example is the process where an

ice cube and a cup of boiling water turn into lukewarm water after some time. The

reverse process, i.e. that of a cup of lukewarm water turning into boiling water with an

ice cube, has not been observed in reality. This is the so-called reversibility paradox,

which is usually attributed to Josef Loschmidt who questioned Boltzmann’s monotonic

approach towards equilibrium [76].

In this chapter, we will review the familiar explanations of irreversibility in classical

physics using the ideas of mixing and coarse graining. We will introduce a measure of

stability in the framework of fidelity, and give a summary of previous fidelity studies.

The RMT ensemble of Wigner Lorentzian Random Matrices will be used as a model to

study systems at a metal-insulator transition. We will study fidelity decay in different

regimes of perturbation strengths and seek for the signatures of criticality in the fidelity

32
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decay. Finally, this chapter will end with conclusions that sum up the main results of

the study.

3.1 Fidelity as a Measure of Quantum Stability

Following the discussion in [77,78], we now provide the explanations of irreversibiliy in

classical physics. The central idea is that irreversible processes occupy such a small part

of the phase space that one needs to have incredibly high control over the preparation –

impossible to make happen in practice. To understand the notion of mixing in chaotic

systems, let us consider two finite but fixed subsets V1 and V2 of a phase space, whose

measures are fractions µ1 and µ2 of the total phase space respectively. Suppose that the

distribution f1(p, q) is uniform in V1 at time t1 with
∫
f1dV1 = 1. Then, for any time

t2 sufficiently remote from t1 (in the future or in the past) and for sufficiently large µ1

and µ2,
∣∣∫ f2dV2 − µ2

∣∣ < δ with arbitary small δ > 0 regardless of where V1 is. This is

called mixing, which is a property of chaotic systems. A crude (but useful) rephrasing

of mixing is that chaotic trajectories fill up the whole phase space if one waits long

enough. Notice that the idea of mixing is time symmetric, so that by itself it can not

explain irreversibility. It is also worth noting that the smaller δ, µ1 or µ2, the larger

the time |t1 − t2| needed for mixing.

In our ice cube example, µ1 represents an ice cube plus boiling water while µ2 represents

the lukewarm water , with µ1 � µ2 ≈ 1. With suitable value of the total energy, almost

every evolution will lead to a cup of lukewarm water, with perhaps only extremely small

inhomogeneties. Nonetheless, we can, conceptually, prepare the lukewarm water at time

t2, so that at a later time t1, it will separate into ice cube and boiling water. However,

this scenario requires a very special preparation (not just any cup of lukewarm water,

but one with delicate correlations between all the molecules) and this preparation has

a µ2 so small that mixing will not yet be valid after the given finite time t1 − t2.
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Furthermore, we may not be able to achieve such high-precision control over the prepa-

ration due to the coarseness of our instruments. This is the idea of coarse graining.

Because of our instrumental limitations, we can not locate the initial state within such

a small V2 (i.e. with µ2 so small that mixing has not yet ocurred after a finite t1 − t2).

Therefore, we can not prepare the system at time t2 so that after a finite time t1 − t2,

it will be located with certainty in the desired small region V1 of phase space. Thus,

there are classical processes (e.g. from lukewarm water to an ice cube in boiling water)

which can not be made to occur due to mixing and coarse-graining. What happens if

we bring the ideas of mixing and coarse graining to the quantum world?

Due to the uncertainty principle, a distribution in phase space can not develop structures

on scales which are smaller than ~. Therefore, the property of mixing has an ill-defined

analogue in the quantum case. In addition, coarse graining seems to make no sense

in the context where dynamical quantities occur with discrete values, such as that in

quantum mechanics. In principle, it is possible to prepare arbitarily pure quantum

states. Even with small error in the preparation of the initial state, the error will not

grow because the Hamiltonian evolution is unitary. Initially neighbouring states remain

close throughout the evolution since their scalar product is invariant.

To motivate a new idea of analyzing stability (and hence reversibility) that works both

classically and quantum mechanically, Peres [77] proposed that instead of assuming

that our preparations are marred by limited accuracy, we may assume that they are

perfect, but on the other hand, the Hamiltonian is not exactly known. This is justifiable

because in practice we can not perfectly insulate a physical system from its environment,

e.g. from ambient fields (like electromagnetic or gravitational field) that are present in

the lab. There is an unavoidable difference between the Hamiltonian H1 used for the

forward evolution and H2 the time-reversed Hamiltonian. This difference is formally

investigated through the fidelity , defined as:

F (t) ≡ |
〈
ψ0

∣∣eiH2te−iH1t
∣∣ψ0

〉
|2; ~ = 1 (3.1)
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Figure 3.1: Schematic illustration of the two equivalent interpretations of fidelity. Here, H1

represents some forward unperturbed Hamiltonian and H2 the backward perturbed Hamilto-

nian. The absolute-value-square of the bracket between |ψ1〉 and |ψ2〉 yields the fidelity whereas

the absolute-value-square of the result of bracketing |ψ0〉 with |ψLE〉 gives the Loschmidt Echo,

but the two end results are mathematically equivalent. Figure from [78].

where H1 and H2 = H1+xeB represent the unperturbed Hamiltonian and its perturbed

variant respectively, while |ψ0〉 is an initial state. The Hamiltonian B represents a

perturbation due to interaction with the environment, and xe is an external parameter

which controls the perturbation strength.

In fact, one can interpret fidelity in Eq. (3.1) in two equivalent ways (see Fig. 3.1). It can

be considered as the overlap of an initial state |ψ0〉 with the state |ψLE〉, where |ψLE〉

is obtained after a forward (in time) unperturbed evolution, followed by a backward (in

time) perturbed evolution (the red path). Equivalently, it is the overlap of the state

|ψ1〉 obtained after a forward unperturbed evolution and the state |ψ2〉 after a forward

perturbed evolution (the blue path).

The first interpretation is the original proposal by Peres [77] to study quantum-classical

correspondence and identify traces of classical (chaotic or integrable) dynamics. It is also

inspired by nuclear magnetic resonance experiments which explore whether it is possible

to evolve a complex system backwards in time under certain circumstances [79]. In this
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context, fidelity is also known as the Loschmidt Echo (hence |ψLE〉), which is related to

the gedanken experiment of the Boltzmann-Loschmidt controversy over the issue of the

arrow of time [80].

The latter interpretation is closely linked to the concept of dephasing [81] in mesoscopic

devices and coherent manipulation of a quantum state. Sustaining the coherence of

a superposition of state vectors is at the heart of quantum parallelism in quantum

computation schemes [82–84]. The role of fidelity in the context of dephasing will be

discussed further in Appendix D.

The theory of fidelity [77] has been a subject of intensive research activity during the last

years (for a recent review see [85]). This interest has been motivated by various areas

of physics, ranging from atomic optics [86–88], microwaves [89] and elastic waves [90]

to quantum information [84] and quantum chaos [47, 91–100]. It has been adopted as

a standard measure for quantum reversibility and stability of quantum motion with

respect to changes in an external parameter xe.

3.1.1 Previous Fidelity Studies and Critical Systems as a New Uni-

versality Class

For a quantum system with a classical chaotic counterpart, the decay of the fidelity

depends on the strength of the perturbation parameter xe. Recent studies indicated

that there are three strength regimes: the standard perturbative regime, the Fermi

Golden Rule regime (FGR), and the nonperturbative regime. The first two can be

described by Linear Response Theory (LRT) leading to a decay which depends on the

perturbation strength xe as

F (t) ∼ e−(xet)2 (3.2)

and

F (t) ∼ e−x2
et (3.3)



Chapter 3. Quantum Stability of Critical Systems 37

respectively [91,94,95]. In the nonperturbative regime, the decay is

F (t) ∼ e−λt , (3.4)

with a rate that is perturbation independent and is given by the Lyapunov exponent λ

of the underlying classical system [47,91,100].

The investigation of the fidelity has recently been extended to systems that have inte-

grable classical dynamics. It was shown [92] that the decay follows a power law

F (t) ∼ t−3d/2, (3.5)

where d is the dimensionality of the system. A similar algebraic decay was found for

disordered systems with diffractive scatterers, where now the power law is governed by

the diffusive dynamics [101].

Despite the progress in the understanding of fidelity of various systems, a significant

class was left out of the investigation. These are systems which show critical behavior as

an external parameter changes, such as that at the Anderson MIT, which was discussed

in Sec. 2.1. Therefore, we want to bring the study of fidelity into a new arena – that

of disordered systems with a metal-to-insulator transition (MIT) – and propose it as a

new measure of critical behavior. Our calculations will be performed in the framework

of a recently proposed RMT ensemble [67] which models critical behaviour.

3.2 Critical RMT Models

The RMT ensemble of Wigner Lorentzian Random Matrices (WLRM) was introduced

in [67], and is defined as:

H = H0 + xB (3.6)

Both H0 and B are real symmetric matrices of size L×L with matrix elements randomly

drawn from a normal distribution with zero mean and a variance depending on the
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b

Figure 3.2: Absolute-value-square of the matrix elements of H0 and B (in the basis where H0

is diagonal). The width b gives an effective bandwidth of the matrix. The color scale is such

that blue colors are closer to zero whereas more positive values correspond to the red end of the

spectrum.

distance of the matrix element from the diagonal

〈σ2
nm〉 =

1
1 + |n−mb |2

. (3.7)

Above, b ∈ (0, L) is a free parameter that controls the critical properties of the system

(see Fig. 3.5). A typical view of the absolute-value-square of the matrix elements of

these two matrices (in the basis where H0 is diagonal) is shown in Fig. 3.2.

Random matrix models with variance given by Eq. (3.7) were introduced in [67] and

further studied in [102–105]. Field-theoretical considerations [67, 102, 103] and detail

numerical investigations [104,105] have verified that the models show all the key features

of the Anderson MIT, including multifractality of eigenfunctions and non-trivial spectral

statistics at the critical point. A theoretical estimation for the correlation dimension of

the critical eigenstates Dψ
2 (see Sec. 2.1.2) gives [106]

Dψ
2 =

 4bΓ(3/2)[
√
π Γ(1)]−1 , b� 1

1− 2(2πb)−1 , b� 1

where Γ is the Gamma function, and Dµ
2 = Dψ

2 /d is the correlation dimension of the

Local Density of States (LDoS) with d is the actual dimensionality of the system [107].
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For the WLRM model, D2 ≡ Dµ
2 = Dψ

2 since d = 1. The correlation dimension

Dψ
2 is usually defined through the inverse participation number P2 (see Eq. (2.17)).

It is also related to the spectral compressibility χ = (d − Dψ
2 )/2d, defined through

the level number variance (δN)2 ≈ χ〈N〉 [104, 108, 109], where N is the number of

energy levels in a sufficiently large (relative to the mean level spacing) energy window.

We will operate in the basis where H0 is diagonal. In this basis, the perturbation

matrix B is x−invariant [110], i.e. it preserves the same Lorentzian power-law shape

(as in Eq. 3.7), while its critical properties (like the multifractal dimension Dψ
2 ) remain

unchanged.

3.3 Fidelity for the WLRM Model

The forward and backward Hamiltonians used for the calculation of the fidelity following

Eq. (3.1) are1

H1 = H(x) and H2 = H(−x) (3.8)

For the numerical evaluation of F (t), we have used two types of initial conditions |ψ0〉:

an eigenstate of H0 (ES) and a generic ‘random’ state (RS). In both cases, the results

are qualitatively the same. Therefore, we will not distinguish between them. In our

numerical experiments we used matrices of size varying from L = 1000 to L = 5000.

We have performed an averaging over different initial states and realizations of the

perturbation matrix B (typically more than 1000).

3.3.1 Standard Perturbative and Fermi Golden Rule Regime

In Fig. 3.3, we report an overview of the temporal behavior of the fidelity F (t) for

three representative perturbation strengths. For perturbation strengths smaller than

xc ≈ ∆√
π

√
1 + 1

b , the decay of F (t) is gaussian (see Fig. 3.3a). The perturbative border

1From Eq. (3.1) and Eq. (3.8), we see that xe = 2x.
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Figure 3.3: Fidelity of an ES, for (a) x = 0.01 (the standard perturbative regime), (b) x = 0.8

(FGR regime) and (c) x = 20 (nonperturbative regime). The solid lines are the LRT results

from Eq. (3.9) while the crosses are the outcomes of the numerical simulations with the WLRM

model from Eq. (3.6) and Eq. (3.7). In these simulations, L = 1000 and b = 10. The mean level

spacing of the unperturbed system is set to ∆ ≈ 1. In this case, xc ≈ 0.59 and xprt ≈ 1.88. The

dotted line in (c) is plotted to guide the eye on the power-law behavior.
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xc is the perturbation strength needed in order to mix levels within a distance of the

mean level spacing ∆ [110](see Appendix E).

Above this border, one typically expects an exponential FGR decay of fidelity [91], with

a rate given by the width of the Local Density of States (LDoS) [110] (see Fig. 3.3b).

We can apply Linear Response Theory (LRT) [1] to evaluate the decay of F (t) in these

two regimes. The resulting expression reads

〈F (t)〉B,n0 ≈ 1− (2x)2C(t) ≈ exp−(2x)2C(t) (3.9)

where 〈. . .〉B,n0 represents a double average over B and initial states2. The right-hand

side of expression (3.9) assumes the validity of infinite order perturbation theory. The

correlator C(t) is [1]

C(t) =
∫ t

0
dτ1

∫ τ1

0
dτ2

∑
n

|cn|2C̃n(τ1 − τ2)− 2It2 (3.10)

where I =
∑

n |cn|4 is the inverse participation ratio of the initial state, C̃n(t − t′) ≡

2
(

1 +
∑

γ σ
2
n,γ cos

[
(E(0)

γ − E(0)
n )(t− t′)

])
, and E

(0)
n denotes an eigenvalue of H0. In

the case of standard GOE ensembles with σ2
nm = 1, Eq. (3.9) reduces to the expression

derived in [85, 94, 95]. The prediction of LRT in Eq. (3.9) is plotted together with the

numerical results in Fig. 3.3 for different perturbation strengths. A good agreement

between Eq. (3.9) and the numerical data is observed for perturbation strengths less

than xprt (see Fig. 3.3a and Fig. 3.3b), where xprt ≈ ∆
√
b

√
π−2[π/2−arctan(1/b)]

2[π/2−arctan(1/b)]
. The

values of xc and xprt were derived on the basis of the LDoS analysis [110] (see Appendix E

for derivations).

3.3.2 Nonperturbative Regime

For x larger than xprt, the decay of F (t) can not be captured by the LRT. The nonper-

turbative character of this regime was identified already in the frame of the parametric
2The derivation is extremely lengthy and readers are refered to [111].
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Figure 3.4: FI for b = 0.32, 1.00, and 3.16. The initial state was chosen to be an ES. The

mean level spacing of the unperturbed Hamiltonian is set to be ∆ ≈ 1, while the size of the

matrices is L = 5000. The perturbation is x = 5 for all the cases reported here. In the inset, we

also present the fidelity for RS with the same parameters except L = 1000. The straight lines

are plotted to guide the eye.

evolution of LDoS [110]. A representative temporal behavior of F (t) for x > xprt is re-

ported in Fig. 3.3c. For short times the decay of F (t) is Gaussian, but for longer times

one observes a transition to a power law decay. The initial Gaussian decay F (t) ∼ e−x2t2

is universal and can be identified with the quantum Zeno effect [77, 85]. It is valid up

to times tZ ∼ 1/x. We will focus on the observed power-law decay which takes place

for t > tZ .

To reduce statistical fluctuations for further investigation, we use the time-averaged

fidelity FI(t), defined as

FI(t) ≡ 〈F (t)〉t =
1
t

∫ t

0
F (t)dt . (3.11)

The numerical results FI(t) for three different b values, b = 0.32, 1, and 3.16 are reported

in Fig. 3.4. In the inset, we have also included the raw data of the fidelity decay. The

fidelity F (t) clearly displays a power-law decay

F (t) ∝ t−γ (3.12)
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Figure 3.5: D2 and γ versus b. The parameters are ∆ = 1 and x = 5. Here, γ comes from

power-law fitting from our numerical simulations and the lines are analytical estimations from

Eq. (3.8) [67]. The crosses are numerically extracted D2 from Eq. (2.17) [113] .

with γ being a bandwidth b-dependent exponent.

In the special case of the initial state |ψ0〉 being an eigenstate of the backward Hamil-

tonian H2, the fidelity is simply the survival probability of wavepacket dynamics

P (t) ≡
∣∣〈ψ0

∣∣e−iH1t
∣∣ψ0

〉∣∣2 . (3.13)

It is known that the survival probability for a critical system decays as [112]

P (t) ∼ t−D
µ
2 (3.14)

However, in these fidelity experiments, the initial state is neither an eigenstate of H2

nor of H1. In fact, Ref. [97] shows that the physics of quantum fidelity involves subtle

cross correlations which in general are not captured by the survival probability (or the

LDoS which is its Fourier transform) alone.

Nevertheless, motivated by this equivalence between fidelity and survival probability for

the specific choice of initial condition, in Fig. 3.5 we compare the extracted power-law

exponents γ with the correlation dimension Dµ
2 = Dψ

2 = D2. The D2’s are calculated



Chapter 3. Quantum Stability of Critical Systems 44

numerically [113] from the inverse participation number relation in Eq. (2.17), while the

solid lines are estimates from Eq. (3.8) [67]. As can be seen, the agreement between

γ and Dµ
2 is excellent for all b’s, both for the ES and the RS initial conditions, thus

establishing the following relation

F (t) = t−D
µ
2 (3.15)

for the fidelity decay of the WLRM model.

The connection between the exponent γ and the fractal dimension Dµ
2 calls for an argu-

ment for its explanation. The following heuristic argument provides some understanding

of the power-law decay in Eq. (3.15). For any finite Hilbert space, the fidelity F (t) ap-

proaches the value F∞ ∼ 1/L, being the inverse of the dimension of the Hilbert space. If

the dynamics, however, take place in a space with an effective reduced dimension3 Dψ
2 ,

we will have F∞ = 1/LD
ψ
2 . Assuming a power-law decay in Eq. (3.12) for the fidelity, we

can estimate how the time t∗ at which F (t∗) = F∞ scales with L, i.e. t∗ ∼ LD
ψ
2 /γ . On

the other hand, the dynamics of a critical system is characterized by an anomalous diffu-

sive law L2 ∼ t2D
µ
2 /D

ψ
2

∗ [112], which defines the time t∗ ∼ LD
ψ
2 /D

µ
2 needed to explore the

available space L. Equating the two expressions for t∗, we finally get γ = Dµ
2 . Fig. 3.6

gives an illustration of this argument. Although the numerical results leave no doubt on

the validity of Eq. (3.15), a rigorous mathematical proof is more than desirable.

3.4 Conclusions

In conclusion, we have investigated the fidelity decay of systems at MIT, using a critical

RMT model. We have identified three distinct regimes of fidelity decay, based on the

perturbation strength x. In the regime where x < xc, the fidelity decay is Gaussian,

while for xc < x < xprt the decay is exponential. These two regimes are well-described

3For x > xprt, the wave functions are fractal and therefore fill only a fraction of the available space

with an effective dimensionality given by Dψ
2 .



Chapter 3. Quantum Stability of Critical Systems 45

ln t

F∞L1~L1
−D2

ln F

F~t−

t*(L )1t*(L )2

F∞L2~L2
−D2

Figure 3.6: Heuristic argument for the exponent of the power-law decay. For a given system of

size L, the fidelity saturation will be F∞(L) ∼ L−D2 . Assuming a power-law decay in Eq. (3.12),

i.e. F ∼ t−γ , the time to reach this plateau is t∗(L) ∼ LD2/γ . On the other hand, the dynamics

for a critical system is governed by an anomalous diffusive law L2 ∼ t
2Dµ2 /D

ψ
2

∗ . For our model,

D2 ≡ Dµ
2 = Dψ

2 , and thus L ∼ t∗. Equating the two expressions for t∗ gives γ = D2.

by LRT. The third regime (where x > xprt) is nonperturbative and the fidelity decay

follows a power law which is dictated by the critical nature of the system. Specifically,

we have found that the power-law exponent is equal to the correlation dimension of the

critical eigenstates.



Chapter 4

Wavepacket Dynamics of Critical

Systems with Nonlinearity

The spreading of a quantum mechanical wavepacket for a particle moving in a peri-

odic lattice is a textbook example. The width increases ballistically with time and the

corresponding eigenstates are extended (Bloch states). In the opposite case of strongly

disordered systems, however, the eigenstates are exponentially localized, resulting in

a total halt of the wavepacket spreading in the long-time limit [6]. Between these ex-

tremes flourishes the world of quantum systems with anomalous diffusion. These include

systems studied in the early days of quantum mechanics, such as Bloch electrons in a

magnetic field [114] as well as quasicrystals [115] and disordered systems at the metal-

insulator transition [116]. In these cases, the eigenfunctions (or even the spectrum)

show a fractal structure which dictates the wavepacket spreading.

The physical motivation to study such systems, along with the mathematically intrigu-

ing nature of their spectra, led to a series of works that eventually advanced our un-

derstanding of their dynamical properties. Most of these works have focused on the

analysis of the temporal decay of the survival probability P (t) at the initial position n0

46
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and the growth of the wavepacket’s second moment m2(t) [112,117–119].

Recently, a lot of research efforts have focused on understanding the effects of interaction-

induced nonlinearity in the wavepacket dynamics. Much of this attention was motivated

by recent experimental achievements with ultracold atoms in optical lattices, while at

the same time the effects of nonlinearity in wave propagation is a long-standing problem

in the field of nonlinear optics. Both fields find a common mathematical framework,

provided by the Discrete Nonlinear Schrödinger Equation (DNLSE) model. In particu-

lar, Ref. [120] has numerically studied the destruction of Anderson localization by weak

nonlinearity in the framework of the disordered DNLSE model. They claimed that

above a certain critical nonlinearity strength, the Anderson localization is destroyed,

and hence the initial excitation will completely delocalize for infinite times. This leads

to an unlimited subdiffusive spreading where the second moment grows as tα with ex-

ponent α ≈ 0.3 ∼ 0.4. On the other hand, Ref. [121] proved the statement that in

the large amplitude regime, complete energy diffusion is impossible in the disordered

DNLSE model, thus disproving the claims in Ref. [120]. They have further supported

this statement by studying the temporal evolution of the participation number (see

Sec. 2.1.2) and showing numerically that it does not diverge as a function of time as it

should in the case of subdiffusion. Therefore, they concluded that wave packet diffusion

is absent in the disordered DNLSE model.

Despite all this activity, nothing is known about the effects of nonlinearity in the

wavepacket spreading for systems with fractal spectra and eigenfunctions. Notice-

able exceptions are Refs. [122,123] which numerically studied the wavepacket dynamics

for the prototype one-dimensional (1D) tight-binding Harper model with nonlinear-

ity. Their conclusions, however, are contradictory. Although both studies conclude

that infinitesimal nonlinearity results in a short-time subdiffusive spreading of the vari-

ance m2 ∼ tα, they give different values for the power-law exponent. While Ref. [123]

concludes that the subdiffusive spreading persists for longer time, Ref. [122] reports a

saturation of the second moment. Moreover, they both fail to identify traces of mul-
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tifractality (which are associated with the underlying linear model) in the dynamics

generated by the corresponding nonlinear system.

In the present work, we address the nonlinearity-induced destruction of the anomalous

diffusion. Our focus is on the 1D Harper model at criticality but we expect that our

results will be applicable to other critical models, such as Fibonacci lattices. The first

part of this chapter will give an overview of the linear Harper model at criticality. We will

discuss its spectral and eigenfunction properties, and review the basic facts concerning

wavepacket dynamics of critical systems. We will then introduce the nonlinear Harper

model in the second part and investigate the effects of nonlinearity on the spreading

and the evolving profile of a wavepacket both numerically and analytically [2]. Finally,

our conclusions will be presented in the last section.

4.1 Linear Harper Model

In this section, we will briefly review the basic properties of the linear Harper model.

Its dynamics is described by the standard 1D tight-binding model,

i
∂ψn(t)
∂t

= ψn+1(t) + ψn−1(t) + Vnψn(t) , (4.1)

where ψn(t) denotes the probability amplitude for a particle to be at site n at time t.

For the Harper model, the on-site potential Vn takes the specific form of

Vn = λ cos(2πσn+ φ) . (4.2)

This model was originally proposed by Harper to describe Bloch electrons moving on

a 2D periodic potential in the presence of a perpendicular magnetic field [124]. The

dimensionless parameter σ = a2eB/hc in Eq. (4.2) represents the number of magnetic

flux quanta per unit cell of area a2. We work with the case where σ is an irrational

number, so that the period of the on-site potential Vn is incommensurate with the lattice

period. Such a quasiperiodic model turns out to show interesting critical behavior.
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First, we would like to understand the properties of the eigenstates. Let us write

ψn(t) = cne
−iEt and turn Eq. (4.1) into

Ecn = cn+1 + cn−1 + λ cos(Qn+ φ) cn (4.3)

where Q = 2πσ.

Following Ref. [125], we make the ransformation to the reciprocal space

cn = eikn
∞∑

m=−∞
gme

im(Qn+φ) (4.4)

where k is a wave vector.

Substituting Eq. (4.4) into Eq. (4.3) and after some algebraic manipulation, one ob-

tains

Egm = 1
2λ(gm+1 + gm−1) + 2 cos(Qm+ k) gm. (4.5)

One immediately notices that the transformed equation Eq. (4.5) for λ = 2 has the

same form as Eq. (4.3).This is called the Aubry duality [125].

This duality enables us to investigate localization of eigenstates in the two spaces. We

define γ1 to be the inverse localization length (see Eq. (2.7)) in the real space, and from

the Thouless formula [35] (see Eq. (2.9)), we have

γ1(E) =
∫
dE′ ln

∣∣E − E′∣∣ ρ(E′) . (4.6)

Similarly, the inverse localization length in the reciprocal space γ2 can be written

as

γ2(E) =
∫
dE′ ln

∣∣∣∣2(E − E′)
λ

∣∣∣∣ ρ(E′) , (4.7)

which leads to

γ1(E) = γ2(E) + ln(λ/2). (4.8)

In the case of γ2 = 0,

γ1 = ln(λ/2) > 0 (4.9)
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Figure 4.1: Energies of the linear Harper model as a function of λ for a rational approximant

σ = 32
55 of the golden mean. The point λ = 2 is at the transition between regimes of extended

states (λ < 2) and localized states (λ > 2) for incommensurate σ. Figure taken from [126].

and γ1 being non-negative gives λ > 2. This corresponds to localization of eigenstates

in the real space but extended eigenstates in the reciprocal space. In this case, the spec-

trum(in the real space) is point-like and all states are exponentially localized (localized

regime).

By similar arguments, the opposite scenario corresponds to the case of γ1 = 0 with

γ2 > 0 and λ < 2. The eigenstates (in the real space) are extended and the spectrum

consists of bands (ballistic regime). Fig. 4.1 illustrates the spectral changes for the

Harper model.

At the critical point λ = 2, there exists a metal-insulator transition, where the spectrum

is a zero measure Cantor set with fractal dimension DE
0 ≤ 0.5 [127,128] and exhibits the

rich Hofstadter’s butterfly structure (see Fig. 4.2) [129]. Furthermore, the eigenstates

are multifractal, showing self-similar fluctuations on all scales, with Dµ
2 , the correlation

dimension of the Local Density of States (LDoS) and Dψ
2 , the correlation dimension of

the fractal eigenfunctions [124–126,130,131].
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Figure 4.2: The energy spectrum of the Harper model for λ = 2 vs the incommensurability

parameter σ. The resulting graph is known as the Hofstadter’s butterfly. Figure taken from [128].

Previous studies have also shown that, at the critical point, the temporal decay of the

probability to remain at the original site n0 up to time t goes as 1

P (t) ≡ |ψn0(t)|2 ∼ t−D
µ
2 (4.10)

while the wavepacket second moment grows as

m2(t) ≡
∑
n

(n− n0)2|ψn(t)|2 ∼ t2β with β ≥ Dµ
2 /D

ψ
2 (4.11)

where the exponent β depends on both Dµ
2 and Dψ

2 [112] (see Fig. 4.3 and Fig. 4.4).

In fact, recent studies were able to demonstrate that the center of the wavepacket

spatially decreases as |n − n0|D
ψ
2 −1 for |n − n0| � tβ while the front shape scales

as [119]

P (n, t) = A(t) exp(−|(n− n0)/
√
m2|1/(1−β)) (4.12)

1See inset in Fig. 4.5.
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Figure 4.3: Quantum diffusion of a wave packet initially started at site n0. The survival

probability P (t) decays as t−D
µ
2 s, whereas the k-th moment increases as tkβk , where βk ≥

Dµ
2 /D

ψ
2 . For the case of the second moment, i.e. k = 2, it grows as t2β with β ≥ Dµ

2 /D
ψ
2 . In

any case, the center of the wave packet spatially decreases as |n − n0|D
ψ
2 −1 for|n − n0| � tβ .

Figure is taken from [112].

m
2
(t)

Figure 4.4: Time evolution of the variance of a wave packet. In the case of λ = 2, anomalous

diffusion is observed. For the case of λ < 2, the spreading is ballistic, as expected in an extended

system, while localized states in the case of λ > 2 halt diffusion. Figure taken from [126].
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where A(t) is the height of the wave profile at time t.

4.2 Effects of Nonlinearity in Wavepacket Spreading

We would like to study the effects of nonlinearity on the anomalous diffusion in the

Harper model. Introducing an on-site nonlinear term into Eq. (4.1), we come out with

the nonlinear Harper model (NLHM). Mathematically, it is described by the following

discrete nonlinear Schrödinger equation (DNLSE),

i
∂ψn(t)
∂t

= ψn+1(t) + ψn−1(t) + Vnψn(t)− χ|ψn(t)|2ψn(t) (4.13)

We want to investigate the temporal behavior of the variance 〈m2(t)〉φ for the NLHM

at the critical point λ = 2. The initial condition is always taken to be a δ-like localized

state i.e. ψn(t = 0) = δn,n0 . An averaging 〈·〉φ over a random distribution of the phase

φ (at least 50) in Eq. (4.2) [or equivalently over different initial positions n0 of the δ

function] is done. In our calculations, we take σ to be the golden mean σG = (
√

5−1)/2.

Equation (4.13) has been integrated numerically using a finite-time-step fourth order

Runge-Kutta algorithm on a self-expanding lattice in order to eliminate finite-size effects

[132]. Whenever the probability of finding the particle at the edges of the chain exceeded

10−10, ten new sites were added to each edge. Numerical precision was checked by

monitoring the conservation of probability (norm)
∑

n |ψn(t)|2 = 1. In all cases, the

deviation from unity was less than 10−6.

4.2.1 Wavepacket Spreading

In Fig. 4.5, we report our numerical results for some representative χ values in a double

logarithmic plot. In all cases, the variance displays a power-law behavior 〈m2(t)〉 ∼ tα.

Leaving aside the very initial spreading t ≤ 1 (which in all cases is ballistic), we observe

that for χ ≥ χ∗ ∼ 5.5× 10−4 the spreading is subdiffusive with α < 2β. This spreading
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Figure 4.5: The variance 〈m2(t)〉φ for various χ values of the NLHM. The χ = 10−4 case is

shifted downwards in order to distinguished it from the χ = 0 case. Dashed lines have slopes as

indicated in the figure and are drawn to guide the eye. Inset: the decay of P (t) ∼ t−D
µ
2 for the

linear Harper model (χ = 0).

is valid up to time t < t∗ and then relaxes to the anomalous diffusion α = 2β that

characterizes the linear Harper model.

To obtain the law of spreading for t < t∗, we consider the following simple model (see

Fig. 4.6). The initial site together with its nearby sites n = n0 ± δn is considered as a

confined source 2. Anything emitted from them moves according to the spreading law

of the linear Harper i.e. s(t) =
√
〈m2(t)〉φ = vtβ since for t < t∗ the leaking norm is

small and therefore the nonlinear term in Eq. (4.13) is negligible with respect to the

on-site potential Vn.

Initially, all probability is concentrated at the source. Due to the nonlinear nature of

the system, the decay rate is not constant but depends on the remaining norm. Thus,

the decay process is characterized by the nonlinear equation,

dP (t)/dt = −ΓP (t)P (t) (4.14)

2Our numerical simulations showed that, in general, δn = 1 or 2 sites.



Chapter 4. Wavepacket Dynamics of Critical Systems with Nonlinearity 55

n0 - δn n0 + δnn0 s=v(t-t’)β

P(t’) ~ (t’)−δ

|ψ|  = -P(t’)2
.

Figure 4.6: Illustration of the source model. The initial site n0 together with nearby sites n0±

δn are considered as a source. The decay of the initial probability at the source is characterized

by P (t′) ∼ (t′)−δ whereas the flux emitted from the source is −Ṗ (t′). This emission moves

according to the spreading law s = v(t− t′)β .

which leads to a non-exponential decay [133]. On the other hand, for χ = 0, the decay

is power-law

P (t) ∼ t−δ (4.15)

with δ = Dµ
2 (see Eq. (4.10) above). It is, therefore, natural to expect that for χ 6= 0,

we will have a slower decay with δ ≤ Dµ
2 due to self-trapping [134–136]. The variance

of the confined-source model is then given by [137]

MPS(t) ≈
∫ ∞

0
ds s2

∫ t

0
dt
′
(−Ṗ (t

′
)) δ(s− v(t− t′)β) , (4.16)

where −Ṗ (t) is the flux emitted from the confined source. Substituting Eq. (4.15) for

P (t), we get

MPS(t) ∼ v2

∫ t

0
dt
′
(1/t

′
)δ+1(t− t′)2β. (4.17)

If we do a variable substitution t̃ = t
′
/t, we will get

MPS(t) ∼ v2 t2β−δ
∫ 1

0
dt̃ (1/t̃)δ+1(1− t̃)2β, (4.18)
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Figure 4.7: The fitting values (stars) of the power-law exponent α vs. V for the Fibonacci

model. Circles are the fitting exponent 2β of the linear model for the spreading 〈m2(t)〉 ∼ t2β ,

while diamonds are the extracted exponents 2β −Dµ
2 , where Dµ

2 was obtained from the decay

P (t) ∼ t−D
µ
2 of the linear model.

which leads to

〈m2(t)〉 = MPS(t) ∝ tα (4.19)

with 2β −Dµ
2 ≤ α ≤ 2β.

In order to compare the results of numerical simulations with the theoretical predictions

of Eq. (4.19), we have calculated for the linear Harper model the decay exponent 〈Dµ
2 〉φ

of the survival probability (see inset of Fig. 4.5) and the power-law exponent of the

variance 〈m2(t)〉φ. The least-squares fit gives the values 〈Dµ
2 〉φ ≈ 0.30 ± 0.03 and

2β ≈ 1.00± 0.03. The numerically extracted value of α = 0.71 fulfills nicely the bound

2β −Dµ
2 = 0.70 given by Eq. (4.19).

To further test the validity of Eq. (4.19), we have also performed simulations with the

Fibonacci model, where Dψ
2 and Dµ

2 (and hence β) can be varied according to the on-

site potential Vn. The latter takes only two values ±V (V 6= 0) that are arranged in

a Fibonacci sequence [115]. Again, we find a power-law spreading 〈m2(t)〉 ∼ tα. The
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extracted exponents α corresponding to various V ’s are reported in Fig. 4.7 together

with the theoretical predictions and they confirm the validity of Eq. (4.19).

From Fig. 4.5, we see that the time scale t∗ up to which the power law of Eq. (4.19)

applies depends on the strength of the nonlinearity parameter χ. One can estimate

t∗ from the fact that the effective potential Vχ = −χ|ψn0(t)|2 is comparable with the

on-site potential Vn0 ∼ λ of the linear model at t∗. After this time, one expects that

the effect of nonlinearity on the wavepacket spreading is negligible and therefore the

survival probability should decay as P (t) = |ψn0(t)|2 ∼ t−D
µ
2 . Following this line of

argument, we have that

Vn0 ∼ χ|ψn0(t∗)|2 → Vn0 ∼ χ(t∗)−D
µ
2 , (4.20)

leading to

t∗ ∼ χγ (4.21)

with γ = 1/Dµ
2 . To test this theoretical prediction, we have manually scaled the time

axis so that the variance curve where Eq. (4.19) applies overlaps for various χ values.

The extracted scaling parameters t∗(χ) are plotted in the inset of Fig. 4.8. One can

clearly see that the numerical data confirms the theoretical prediction of Eq. (4.21).

Now, let us turn our discussion to the evolving wavefunction for χ ≥ χ∗. For t > t∗,

although the temporal behavior of the variance becomes the same as that of the linear

Harper model, other moments differ. The profiles reported in Fig. 4.9 are snapshots of

the average wavefunction at various times and for three representative values of χ = 1, 3

and 5 (the linear case χ = 0 is also plotted in the upper inset for comparison). They

are plotted with the scaling assumption

Ps(x, t) =
√
〈m2(t)〉Pχ(n, t), x ≡ n− n0√

〈m2(t)〉
. (4.22)

The data collapse for |x| ≤ 8 (different curves corresponding to various times t and

nonlinearity strengths χ) reveals that this representation is not affected much by finite-
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Harper model.
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χ corrections, although the tails of the profile are χ-dependent. In fact, we found that

the probability distribution near the center can be described by the formula:

Ps(x) ∼ |x|−γ exp(−|x|/l∞), |x| ≤ 8, (4.23)

where γ ≈ 0.7 and l∞ ≈ 1.82. We note that a similar expression for the core of

the probability distribution applies for 1D and quasi-1D disordered models with zero

nonlinearity [132,138].

4.2.2 Critical Nonlinearity

Going back to Fig. 4.5, we observe that the destruction of the anomalous diffusion of

the linear model takes place for χ ≥ χ∗. To quantify χ∗, we evaluate the time-average

survival probability 〈P (T )〉T , defined as [135,136,139]

〈P (T )〉T ≡ lim
T→∞

1
T

∫ T

0
|ψn0(t)|2dt (4.24)

for various values of the nonlinearity strength χ. In our numerical calculations, we took

an average over a time interval of T = 20000. Our numerical results are reported in

Fig. 4.10. We see that up to χ∗ ≈ 5.5 × 10−4, the time-average survival probability

〈P (T )〉T remains unchanged. As the nonlinearity strength χ is increased further, a

fraction of the excitation begins to localize at the initial site. As a result, the fraction of

the excitation that can propagate is now effectively smaller, leading to smaller 〈m2(t)〉

as χ is increased. We note that a similar type of self-trapping phenomenon [134, 135]

was observed in various nonlinear lattices [122, 123, 136, 139–143], although in all these

cases the value of χ∗ was much larger, i.e. χ∗ ∼ O(1).

The following heuristic argument provides some understanding of the appearance of

self-trapping phenomenon for the NLHM. We consider successive rational approximants

σi = pi/qi of the continued fraction expansion of σ. On a length scale qi, the periodicity

of the potential is not manifested and we may assume that for χ < χ∗ the eigenfunctions
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Figure 4.10: The integrated survival probability 〈P (T )〉T vs. χ. For χ ≥ 5.5×10−4, we observe

an increase in 〈P (T )〉T . The first point in the curve corresponds to χ = 0 and is included in

the log-log plot as a reference point. Upper inset shows the scaling of the P2 and −S vs. the

system size qi. The horizontal dashed line is S = −2.2× 10−4.

preserve their critical structure as in the case of χ = 0. In this case, the partitioning of

the energy over the qi sites is 3

H = −χ
2

qi∑
n=1

|ψn|4 +
qi∑
n=1

(ψ∗nψn−1 + ψ∗n−1ψn) +
qi∑
n=1

Vn |ψn|2 (4.25)

Let us first estimate the energy Hss associated with the initial state δn,n0 . Since the

probability distribution is located at a single site, we get an energy

〈Hss〉φ = −χ
2
. (4.26)

Now we want to evaluate the partitioning of the energy Hext for a fractal wavefunction.

In this case, the first term in Eq. (4.25) is the inverse participation number 4, which

scales with the system size qi as

P2 ∼ q
−Dψ2
i (4.27)

3We recall that the DNLSE in Eq. (4.13) can be derived from the Hamiltonian Eq. (4.25) using the

Poisson brackets {ψm, ψ∗n} = iδmn, {ψm, ψn} = {ψ∗m, ψ∗n} = 0 and the equation of motion ψ̇n = {H,ψn}.
4See previous discussion around Eq. (2.18) on the inverse participation number.
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Hence, in the thermodynamic limit where qi →∞, this term will go to zero. We define

the sum of the two other terms as follows:

S =

〈
qi∑
n=1

(
ψ∗nψn−1 + ψ∗n−1ψn + Vn |ψn|2

)〉
φ

(4.28)

We found from numerical calculations (see inset of Fig. 4.10) that S goes to a finite value

in the thermodynamic limit and therefore arrive at the equation 〈Hext〉φ = S.

If Hext is higher than the initial energy Hss, then conservation of energy prevents the

partitioning of energy over all qi sites. Therefore, in the thermodymanic limit, we get

for the critical nonlinearity χ∗ that

χ∗ ∼ −2S. (4.29)

Numerical results in Fig. 4.10 (inset) indicate that S ∼ −2.2×10−4, which is consistent

with our numerical evaluation of χ∗ ∼ 5.5× 10−4.

4.3 Conclusions

In this chapter, we have studied the nonlinear Harper model at criticality and found

bounds for the power-law exponent of the temporal spreading of the wavepacket vari-

ance. These bounds reflect the fractal dimension of the LDoS of the linear system. This

nonlinear spreading appears for nonlinearity strength above some value and persists up

to time t∗ ∼ χ1/Dµ2 ,which depends parametrically on the nonlinearity strength. After

this time, the linear spreading of the second moment is restored; other moments, how-

ever, are still affected by the nonlinearity. For the central part of the evolving profile, we

have also found a scaling relation that applies to any time and any nonlinearity strength.

Our results will find applications in quasiperiodic photonic structures (such as optical

super-lattices [144]) and arrays of magnetic micro-traps for atomic BEC [145].



Chapter 5

Dynamics of BECs in Leaking

Optical Lattices

One of the most fascinating experimental achievements of the last decade was the BECs

of ultra-cold atoms in optical lattices (OLs) [146–150]. Extraordinary degree of precision

and control is now available, not only over the design of the OLs, but also on the strength

of the interatomic interactions and the preparation as well as the measurement of the

atomic cloud. This enables investigation of complex solid state phenomena [149,151–156]

and at the same time promises a new generation of nanoscale devices in the emerging

field of atom-tronics. Therefore, it is both of fundamental and technological importance

to understand the dynamics and the transport properties of BECs in OLs.

On the other hand, one of the most fundamental sources of physical information is time-

resolved decay measurements in quantum mechanical systems which are coupled to a

continuum via leads or absorbing boundaries. While radioactive decay is a prominent

paradigm, there exist recent examples such as transport of atoms in optically generated

lattices and billiards [157,158], the ionization of molecular Rydberg states [159], photo-

luminescence spectroscopy of excitation relaxation in semiconductor quantum dots and

62
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Figure 5.1: Top figure shows a schematic illustration of BECs loaded in an optical lattice.

Bottom figure describes a schematic realization of leakage at the two edges of the lattice using

continous microwave or Raman lasers to spin-flip atoms that reach the edges to a untrapped

state. Thus, the atoms at the edges do not experience the magnetic trapping and hence are

released through gravity. The released atoms are then measured at the detectors. Top figure is

taken from [150] whereas the bottom figure is from [163].

wires [160], and pulse propagation studies with electromagnetic waves [161].

We consider the statistics of emitted atoms from an OL with leakage at the edges. The

leakage can be realized experimentally by applying two separate continuous microwave

fields or Raman lasers at the edges of the sample to locally spin-flip the atoms inside

the BEC to a untrapped state [162–164]. Spatially localized microwave fields focused

below the wavelength can be obtained at the tip of tapered waveguides. The spin-flipped

atoms do not experience the magnetic trapping potential, and hence they are released

through gravity at the ends of the OL (see Fig. 5.1). Thus, an accurate monitoring

of the decay process can be utilized to probe the dynamical properties of BECs in an

OL.

In this chapter, we investigate such a decay process and the existence of rare events

such as avalanches in the temporal decay of the atomic population [3]. We will show

that for a certain range of (rescaled) nonlinearity, there exists a power-law distribution
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in the avalanches (jumps in atomic population’s temporal decay), characterizing sys-

tems at a phase transition. We relate the observed power-law distribution of jumps to

the hierachical structure of a mixed phase space shown by a reduced system of three

nonlinear coupled oscillators. Furthermore, we propose an order parameter to describe

the observed phase transition. It is important to realize that although we will focus

our discussions in the framework of BEC system, our results are more general and find

applications in many other realizations of the DNLSE (see Sec. 2.3), such as the descrip-

tion of light dynamics in arrays of coupled waveguides, where boundary leakage can be

achieved with suitable mirrors.

5.1 Discrete Nonlinear Schrödinger Equation with Dissi-

pation

The simplest model that captures the dynamics of a dilute gas of bosonic atoms in a

deep OL, with chemical potential small compared to the vibrational level spacing, is the

Bose-Hubbard Hamiltonian (BHH). A detailed discussion is presented in Appendix C,

but we shall briefly mention a few essential points here.

In the case of weak interatomic interactions (superfluid limit) and/or a large number

of atoms per well (so that the total number of atoms N ∼ O(104 − 105) is much bigger

than the number of wells M), a further simplification is available since the BEC’s

dynamics admits a semiclassical (mean-field) description. The resulting semi-classical

Hamiltonian that describes the dynamics is

H =
M∑
n=1

[U |ψn|4 + µn|ψn|2]− T

2

M−1∑
n=1

(ψ∗nψn+1 + c.c.) (5.1)

where n is the lattice index, |ψn(t)|2 ≡ Nn(t) is the mean number of bosons at site n,

U = 4π~2asVeff/m describes the interaction between two atoms at a single site (Veff

is the effective mode volume of each site, m is the atomic mass, and as is the s-wave
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atomic scattering length), µn is the on-site chemical potential, and T is the tunneling

amplitude. The ‘wavefunction amplitudes’

ψn(t) ≡
√
Nn(t) exp(−iφn(t)) (5.2)

can be used as conjugate variables with respect to the Hamiltonian iH leading to a set

of canonical equations

i
∂ψn
∂t

=
∂H
∂ψ∗n

i
∂ψ∗n
∂t

= − ∂H
∂ψn

(5.3)

which upon evaluation yields the DNLSE in Eq. (2.50).

To simulate the leaking process at the two edges, we supplement the standard DNLSE

with local dissipation at the two edges of the lattice. The resulting equation reads:

i
∂ψn
∂τ

= (χ |ψn|2 + µ̃n)ψn − 1
2 [ψn−1 + ψn+1]− iγψn[δn,1 + δn,M ] (5.4)

where n = 1, · · · ,M is the index of lattice site, τ = Tt is the normalized time is

defined as , µ̃n = µn/T is the rescaled chemical potential, and χ = 2U/T is the rescaled

nonlinearity. We will assume that the chemical potential µ̃n = µ̃ is the same for all

lattice sites.

The atom emission probability γ can be estimated within a mean-field approximation

[163]. Here, we consider the case of two output-coupler fields interacting with the atoms

at the first and last lattice wells only. We can describe the output coupling through an

external reservoir formed by an infinite number of states [163]. For a broadband coupling

of strength κ, it was shown in [165] that the Born-Markov approximation leading to an

exponentially decaying atomic density inside the BEC should satisfy

ω3/2

πκ2

√
~

2m
� 1 (5.5)

where ω is the 1D trapping frequency and m is the atomic mass. On the other hand,

the characteristic delay time is given by [165]

tD =
1
πκ2

√
2ω~
m

=
~/T
γ
, (5.6)
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which together with Eq. (5.5) gives

~ω
2γT

� 1. (5.7)

Using typical parameter values of experiments of BECs in optical lattices, the above

condition is fulfilled up to γ around 0.5 [151]. In our study, we have chosen γ = 0.2 for

the case where leakage at the lattice edges is present.

5.2 Survival Probability and Order Parameter

5.2.1 Survival Probability

We describe the decay of the total atomic population remaining in the OL of L sites

through the survival probability

P (τ) =
L∑
n=1

|ψn(τ)|2 . (5.8)

Its time derivate I(τ) = −∂P (τ)
∂τ is equal to the outgoing atomic flux. It is also useful

to define a rescaled interatomic interaction Λ = χρ to characterize the initial effective

interaction per site, with ρ = P (τ = 0)/M being the initial average density of atoms

in the OL, so that for a different lattice size M , we maintain the same dynamics by

keeping Λ constant.

In our numerical experiments, we have used initial conditions with randomly distributed

phases, and a constant amplitude with small fluctuations across the lattice. The nor-

malization was done in such a way that P (τ = 0) = 1. Such initial conditions are

first thermalized during a conservative (i.e. γ = 0) transient for times up to τ = 500

typically. After such a transient is completed, dissipations at the lattice boundaries

are switched on, leading to a progressive loss of atoms. Furthermore, we set µ̃ = 0

since it only introduces a constant shift in the energy. The dynamical evolution is done

through numerical integration by the Runge-Kutta-Fehlberg method and deviations of
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P (τ) from unity in a closed system (i.e. γ = 0) was of the order of 10−5 ∼ 10−4 for the

time scale that we are interested in.

In Fig. 5.2, we show the density plots that capture the dynamics of the leaking system

(i.e. γ 6= 0) for some representative values of the rescaled nonlinearity Λ. The color

represents the renormalized (with respect to the original population) atomic population

Nn(τ) = |ψ(τ)|2 at each site.

For small nonlinearity strengths Λ ≤ Λb ∼ 0.25 (see Fig. 5.2a), the system behaves as

in the linear regime, i.e. the density is distributed uniformly across the whole lattice.

As the rescaled nonlinearity is increased beyond Λb (see Fig. 5.2b), we observe that the

system organizes itself and localized structures, i.e. the discrete breathers (DB) emerge..

As we have discussed in Sec. 2.3, a DB is a three site solution of the DNLSE, with high

atomic density concentrated mainly at the middle site, and two low-density neighboring

sites oscillating out-of-phase with respect to the middle site (self-trapped solutions).

DBs were observed in various experimental setups [166–171] while their existence and

stability was studied thoroughly during the last decade [69,70,72,172–174].

As the rescaled nonlinearity Λ is increased, we see from Fig. 5.2(c-e) that the density

of DBs increases. In fact, for Λ = 16, we observe that the number of breathers K

is approaching the lattice size, i.e. K ∼ O(M). We have also found the existence of

moving breathers, i.e. breathers that are mobile with smaller density relative to the

stationary breathers, for Λ > 0.5. In the case of Λ ∼ O(1), we note the co-existence

of both the stationary and moving breathers 1. The interaction between these two

high-density objects will be a subject of interest for our discussion later.

The role of DBs in relaxation phenomena of generic nonlinear lattices was already

recognized in [175], where it has been shown that they act as virtual bottlenecks which

slow down the decay process [69, 174, 175]. Indeed, Fig. 5.2c shows that for the case of
1Note that although moving breathers can survive for very long time, strictly speaking they are not

stationary solutions of the DNLSE.
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Figure 5.2: The right figure shows a density plot of evolutions of BECs in an optical lattice

with leakages at the two edges. The color codes are the Nn(τ), where red color represents

higher density. For (a) small nonlinearity strengths Λ ≤ Λb ∼ 0.25, the density is distributed

uniformly across the whole lattice while for (b) Λ > Λb ≈ 0.25, the first breather appears. At

(c) Λ ∼ O(1), stationary breathers co-exist with moving breathers. For higher Λ (c)-(e), one

observes an increase in the number of breathers and changes in the stability of the breathers.

For strong nonlinearity, for e.g. (e) Λ = 16, the number of breathers is of the order of M . DBs

are observed to act as dynamical barriers, insulating the leaking boundaries from the central

core. The left figure shows a zoom-in view of the profile a breather in (c) centered at site 29 at

time τ ≈ 600× 30. In all cases, the parameters are M = 128 and γ = 0.2.
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Figure 5.3: An example of avalanches in the survival probability, with jump size J .

Λ ≥ 1.0, the two outer-most breathers act as barriers which trap the atoms in the bulk of

the lattice, preventing them from leaking out towards the absorbing boundaries.

In Fig. 5.3, we report (see also [162, 163]) the temporal evolution of P (τ) for various

initial conditions. A striking feature is the appearance of jumps, indicating an avalanche-

like behavior where a sudden burst of density (e.g. mass, number of atoms or energy)

occurs. The numerical method that we used to evaluate a jump size J is explained in

Fig. 5.4. Our target is to analyze the distribution P(J) of these jumps J .

As we discussed previously, for weak nonlinearity DBs can not form (see Fig. 5.2 for

Λ = 0.25) and P (τ) decays smoothly, thus leading to no avalanches in the decay. On

the other extreme of strong nonlinearity, the number of breathers is of the order of M .

In such a case, each breather has a smaller density (due to normalization) and hence it

is extremely unlikely to have large jumps in P (τ).

In the intermediate regime of Λ = Λ∗ ∼ O(1), we found a power-law distribution of
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Figure 5.4: Numerical estimation of J . The blue curve is a typical P (τ) with jumps (left axis)

while the grey curve is the absolute value of the numerical derivative |∆P/∆τ | (right axis).

When |∆P/∆τ | rises above a threshold (∆P/∆τ)T (dashed grey line), we register P1 and when

it falls below (∆P/∆τ)T , P2 is registered. A jump J is then estimated to be J = P2 − P1. The

program then continues to register the next point P3 as the beginning of another jump and so

on. The threshold (∆P/∆τ)T used in these calculations was set to be (∆P/∆τ)T ≈ 7 × 10−6.

We have also checked that our numerical results for the P(J) do not change for other choices of

the threshold.

jumps (see Fig. 5.5)

P(J) ∼ J−α (5.9)

which can be considered as a signature of a phase transition.

5.2.2 Order Parameter

From the previous section, it is clear that the appearance of a power law distribution

in Eq. (5.9) is associated with the existence of DB’s. It is, therefore, crucial to quantify

their density in terms of the nonlinearity strength, tunneling constant and number of

sites. Thus, we propose an order parameter PR which provides a rough estimate of the
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Figure 5.5: Jump distribution P(J) for different Λ. We observe power-law distribution P(J) ∼

J−α with α ≈ 1.86 for Λ = 1.0 whereas for Λ 6= 1.0, we found deviations from power-law. We

set γ = 0.2 in all cases.

relative number of sites that are occupied by DBs. It is defined as

PR =
〈

[P (τ)]2

M
∑

n |ψn(τ)|4

〉
(5.10)

where in the above definition, a time-averaging (after some transient time) is assumed.

Note that in the case of γ = 0 the above quantity is the standard participation ratio

(see Eq. (2.19)). The values of PR for the two extremes of Λ = 0 (linear lattice) and

Λ � 1 (very strong nonlinearity regime) can be calculated analytically, and they are

PR = 1/2 and 5/9 respectively (see Appendix F). The former case correspond to the

situation where there is no DB, while in the latter case the number of DBs K is of the

order of the total number of lattice sites M . In Fig. 5.6, we report the behavior of PR

as a function of the rescaled nonlinearity Λ. Indeed, the two limits of PR are confirmed.

The transition from one limit to the other is dictated by the scaled nonlinearity Λ.

Now that the limiting cases are understood in the closed system, we turn on the dissi-

pation and evaluate PR for various Λ’s. As can be seen from Fig. 5.6, depending on
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the value of Λ, we can still distinguish the two limiting cases. However, an additional

situation emerges: For Λ ∼ Λb ≈ 0.25, we observe a dip in the order parameter PR,

which takes the value O(1/M). This corresponds to the creation of only one DB. In

fact, as we can see from Fig. 5.6, the transition between the linear regime and the case

where one DB is created becomes sharper in the thermodynamic limit. This indicates

the existence of a phase transition. We have confirmed that the above behavior of the

PR remains qualitatively the same for various values of γ ranging from 0.01 to 1, and

is insensitive to the time window where the evaluation of PR in Eq. (5.10) is done. In

contrast, for Λ� 1, we recover the strong nonlinearity limit where many breathers are

found. However, our analysis of PR was not able to clarify if a similar ‘sharp’ transition

takes place in this limit.

Thus, in the case of γ 6= 0, we have come out with distinct regimes: Λ < Λb, where the

system can not support any DB, Λb < Λ ∼ Λ∗ where more than one DB’s co-exists with

moving breathers, and finally the strong Λ asymptotic regime Λ > Λ∗ > Λb, where the

number of DB is comparable to the number of lattice sites M . Our numerical analysis

indicated that the regime where the jump distribution P(J) follows a power law is

associated with the second regime.

While a quantitative estimation of the critical nonlinearity Λ∗ is still lacking, we can

provide a lower-bound for Λ∗ by assuming that in the critical regime, the system self-

organizes itself into a breather configuration that minimizes the energy. Our calculation

in Appendix H implies that this assumption requires Λ∗ ≥ 1, which is consistent with

our numerical results.

5.3 An Avalanche Event

Let us study in more detail the dynamics that leads to the creation of a single avalanche

event. A typical event of an avalanche is depicted in Fig. 5.7, where the process occurs
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Figure 5.6: PR vs Λ. Numerical results confirm that in the two limits of Λ, PR converges

to 1/2 in the linear regime while it approaches 5/9 in the strong nonlinearity regime. Sharp

dips in the open systems (near Λb ≈ 0.25) indicate the creation of the first breather. Power-law

distribution of jumps has been observed for Λ = Λ∗ ∼ O(1), which is consistent with Λ∗ ≥ 1.

in two stages. The first stage involves a collision between a stationary DB and a moving

DB (of density δppert), coming from the bulk of the lattice. In the second stage, a

particle density δpout, which is part of the moving DB, tunnels through the stationary

DB and migrates to the other neighboring site of the DB. The tunneling density will

travel towards the leaking edge of the OL and eventually decay in the form of an atomic

burst, which gives rise to a jump in the survival probability.

During the tuneling process, the stationary breather is destabilized and migrates one

lattice site inwards before it stabilizes again. One approach to understand the destabi-

lization process and migration of DBs is through the idea of the Peierls-Nabarro (PN)

barrier [176, 177]. In essence, high-amplitude excitations with a width of the order of

the lattice constant are subjected to a strong spatially periodic force that impedes their

movement. This barrier is due to the fact that the intermediate state of a migration

process possesses a higher energy content. For a migration to occur, an external energy
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source, such as that of a moving breather, is needed to provide temporary increase in

the energy of the excitation. This effective pinning energy is not necessarily a fixed

barrier caused by the lattice, but also in general depends on the amplitude of the exci-

tation itself [178] together with the condition that the total number of particles in the

excitation is conserved during the migration [69].

To give a more concrete illustration, we shall follow Ref. [177] and consider the two

configurations: isolated peak (IP) and isolated bond (IB) (see top insets of Fig. 5.8).

We start with the IP configuration (which can be seen as a simplified version of a static

DB) with |ψn|2 = δn,l Ad, i.e. delta excitation at site l with density Ad. During the

migration, the system has to be in an intermediate state of the IB configuration, with

half of the particles transferred to site l + 1, i.e. |ψl|2 = |ψl+1|2 = Ad/2. One can

calculate the energy Hd associated with each configuration, as a function of the initial

density at the peak Ad [177]. As we can see in Fig. 5.8, for Ad < 4, the IB configuration

has higher energy content than the IP configuration, thus providing a energy barrier for

migration to happen. Typical static breathers in our numerical simulations fall into this

region. Therefore, a static DB, in the absence of external perturbation, stays localized

due to its lack of energy to reach an intermediate state of a migration process. When

a moving breather perturbs the static breather, it provides the additional energy to

overcome the PN barrier, thus enabling a migration event to occur.

5.3.1 Relationship between δpout and δppert

Since a jump in P (t) corresponds to δpout of an event, we would like to further investigate

how δpout is related to δppert, and strive to understand the physics of jumps through

the perturbation. This analysis will prove to be essential for the study of the statistics

of jumps later.

We have checked numerically that during a collision process, both the number of parti-

cles and the total energy of the three lattice sites (M = 3) of the stationary DB (that are
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Figure 5.7: Snapshot of an avalanche event. On the left, we are plotting τ vs P (τ) whereas

on the right we are plotting τ vs site index, with the color indicating Nn(τ) the atomic density

at each site. A moving DB of density δppert comes in from the right and collides with the

stationary breather. During the collision, the stationary breather gets destabilized and moves

inwards while part of the moving DB (of density δpout) tunnels through the stationary breather

and travels towards the edge of the lattice. The arrival of the transmitted density at the edge

registers a jump in the survival probability.
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Figure 5.8: Energy Hd vs particle number Ad for IP and IB configuration. For Ad < 4,

the IP configuration needs extra energy to move to the IB configuration. Since a migration

process involves an intermediate IB configuration, in the absence of any external energy source,

the excitation stays localized. If this energy mismatch is provided by external perturbation,

migration is then allowed to occur. Top insets show an example for each configuration. Figure

taken from [177].
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Figure 5.9: Energy and density vs time during an avalanche. Here, Ej is the energy and Nj

is the density at site j. Initially the static breather is centered at site 54. At τ ≈ 442, an

avalanche event is triggered, where the center of the breather migrates inwards to site 55, hence

transferring the entire energy and density content to site 55. We observe that the total energy

and density of the three sites before and after the avalanche are roughly conserved.

involved in the dynamics) are conserved (see Fig. 5.9). This enables us to turn the study

of the collision process between stationary DB and moving breather into a perturbation

problem of a reduced (M = 3) system [72], i.e. the closed trimer (γ = 0). In order

to simulate a breather using a closed trimer, the initial atomic density is distributed

among the three sites such that the system is in a self-trapped state [73, 179] at the

second site. This can be easily done by having a large population imbalance between

the middle site and each of the neighboring sites [73,179]. Thus, with large population

in the middle site, the closed trimer corresponds to a 3-site breather in our original

extended system.

After evolving the trimer in the self-trapped state for some time, we introduce additional

density δppert to the first site, which acts as a perturbation that corresponds to the role

of the moving breather in the extended system. Then, the trimer continues to evolve for

some time without any further perturbation. We calculate the maximum density that

the third site achieves and register it as δpout. We present our results in Fig. 5.10. For
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Figure 5.10: Simulation of an avalanche event using a closed trimer. We observed that the

addition of δppert & 0.25 to the first site destabilizes the self-trapped state. Some of the density

tunnels through the second site and reaches the third site. We register the maximum density

on the third site as δpout and obtain δpout ∝ δppert.

δppert < 0.25, no density gets transmitted while above this threshold, one observes that

part of the perturbation tunnels through to the third site, with the transmitted density

being a fraction of the perturbation, i.e.

δpout ∝ δppert . (5.11)

5.4 Statistics of Jumps: A Phase Space Picture

Equipped with an understanding of an avalanche event, we now develop a physical

understanding on the origin of a power-law distribution of the jumps through an analysis

of phase space structure of the reduced trimer system.

In Fig. 5.11, we show a Poincaré section for the trimer at Λ ≈ 1.0, plotting N2 vs

(φ3−φ2)/π where φ’s are the angles in Eq. (5.2). The Poincaré section corresponds to the

plane φ1 = φ3 and φ̇1 > φ̇2 of the energy surface. It clearly shows a hierarchical mixed



Chapter 5. Dynamics of BECs in Leaking Optical Lattices 79

Figure 5.11: Poincaré section for a closed trimer at Λ ≈ 1.0. The Poincaré plot is for the plane

φ1 = φ3 and φ̇1 > φ̇2. The total energy of the three sites is chosen to be E = 0.20, corresponding

to typical energy of a breather in our system.

phase space structure with islands of regular motion (tori) embedded in a sea of chaotic

trajectories. Chaotic trajectories have continuous Fourier spectra, parts of which overlap

with the linear spectrum of the lattice allowing for resonance phenomena with the

linear excitations. In contrast, trajectories inside the islands correspond to stable DBs,

provided that their frequency and its multiplies are outside the linear spectrum [72].

Therefore, the destabilization of a stationary DB by a lattice excitation (thermal fluc-

tuation or a moving DB with density δppert) is possible only if the DB can be pushed

out from the regular orbit across the island towards the chaotic sea. The particle’s

motion then becomes chaotic, allowing for a continuous Fourier spectra and thus for

dramatic increase of frequency overlap with the phonon band. This destabilization pro-

cess lets the pertubation tunnel through and reaches the leakage at the edges, triggering

an avalanche.
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Figure 5.12: Illustration of the arguments leading to Eq. (5.12). The figure shows an island in

a background of chaotic sea. Black ellipses correspond to regular orbits in an island, where s is

the maximum diameter of the island. The blue ellipse is an example of a regular trajectory of a

particle on the island, which corresponds to the case of a DB in our system. To destabilize the

DB by pushing it to the chaotic sea and hence coupling it to the phonon bath, the perturbation

strength has to be δppert ∼ s.

Hence, in appropriate plot of Poincaré section2, the perturbation δppert needed to desta-

bilize a stationary DB follows the relation δppert ∝ s (see Fig. 5.12). Together with

Eq. (5.11), we obtain J ∝ s and conclude that

P(J) ∼ P(s). (5.12)

Therefore, the task to understand the origin of the power-law distribution of jumps

P(J) translates into the study of the distribution of island sizes P(s).

5.4.1 A Simple Hierarchical Model

Let us consider a simple hierarchical mixed phase space in d dimensions. Let us assume

that, due to self-similar structure of the mixed phase space, there exists a well-defined

main island of linear size sk (e.g. the diameter) at each hierarchy level k, with nk

number of sub-islands for each main island (see Fig. 5.13 for illustration). Defining

fk = sk−1

sk
, which is the fraction of sizes of main island to sub-island at hierarchy level

2Note that in the reduced M = 3 system, Arnold diffusion is prohibited.
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Figure 5.13: Illustration of the simple hierarchical model. This figure shows the example of

n = 3. The 0-th level main island has diameter s0 and is surrounded by n = 3 sub-islands of size

s1, in a background of chaotic sea. Due to self-similarity, if we zoom into one of the sub-islands,

we would recover the self-similar structure of the islands but now with the main island being in

the k = 1 level with s1 diameter, surrounded by another n = 3 sub-subislands with diameter s2.
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k, we get

s(k) =
s0∏k
i=1 fi

. (5.13)

The total number of islands up to level k reads

p(k) =
k∏
i=1

ni . (5.14)

Without loss of generality, we set s0 = 1, and consider the simplified case of ni = n and

fi = f . Then, s(k) = f−k and p(k) = nk, leading to

p(s) = nk(s) = s
− lnn

ln f , (5.15)

where k(s) = − ln s
ln f .

Thus, for this simple model, we obtain a power law distribution of island size

p(s) = s−α , (5.16)

where α = − ln s
ln f .

Due to self-similar structure of the phase space, we request that the total number of

island diverges. This implies that the integral
smax∫
s

p(s′)ds′ = s−α+1 − s−α+1
max (5.17)

must diverge for s→ 0, leading to

α > 1. (5.18)

On the other hand, we also request that the total volume of the islands to be finite as

the volume of the phase space is finite as well. Specifically, the integral
smax∫
s

(s′)dp(s′)ds′ ∝ s−α+1+d − s−α+1+d
max (5.19)

has to converge in the limit of s → 0. This requirement leads to the following upper

bound for α

α < 1 + d (5.20)
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where d is the dimension of the phase space.

Summarizing the two bounds for the power-law exponent α, we obtain

1 < α < 1 + d. (5.21)

Thus, for a 2-dimensional phase space, the exponent is expected to be bounded by

1 < α < 3 . (5.22)

We were able to test the above hypothesis on the power-law distribution of island sizes

and the bounds in Eq. (5.22) using the kicked rotor. Leaving aside the technicality in the

numerical calculation (which is provided in Appendix G), the distribution of the island

sizes indeed follows a power-law with α ≈ 1.42. This is consistent with the bounds in

Eq. (5.22). Moreover, as shown in Fig. 5.5, for the DNLSE with dissipation, we obtain a

power-law jump distribution with α ≈ 1.86, which is also in agreement with the bounds

given above.

5.5 Conclusions

In conclusion, we have studied the dynamics of BECs in leaking OLs. In particular,

we have observed the existence of avalanches in the decay of the atomic population

, and provided an explanation of these events using the scenario of a collision process

involving a stationary breather and a moving breather. We have found that for a certain

range of (a rescaled) nonlinearity Λ∗ ∼ O(1), there exists a power-law distribution

P(J) ∼ J−α for the avalanche, suggesting the existence of a phase transition. We

further propose an order parameter PR which measures the relative number of sites

that are occupied by DBs. We have linked the observed power-law distribution of jumps

to the hierachical structure of a mixed phase space shown by a reduced system of three

nonlinear coupled oscillators. In particular, we have argued that the statistics of jumps
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is equivalent to the statistics of island size in this mixed phase space and constructed

a simple hierarchical model that shows a power-law distribution of island sizes. This

model provides bounds 1 < α < 3 for the power-law exponent, which are consistent

with the power-law distribution of island sizes found in the mixed phase space of the

kicked rotor and our power-law jump distribution in the BECs in leaking OLs.



Chapter 6

Conclusions and Outlooks

In conclusion, we have studied wave dynamics and stability of complex systems with a

localization-delocalization phase transition, which can be created by tuning an internal

or external parameter. Examples are random media where the disorder strength drives

the system from a metallic to an insulating phase, a singular potential in classically

chaotic systems or a local nonlinearity induced by particle-particle or wave-matter in-

teractions. Due to the fact that at the transition (critical) point, the system shows a

scale-free behavior, various interesting statistical properties of the energies and wave-

functions emerge. These have direct influences in the dynamics exhibited by the sys-

tem.

This thesis was presented in three main parts. In the first part, we have investigated the

fidelity decay for systems at the Anderson Metal-Insulator Transition. This quantity

measures the stability of the dynamics to external perturbations. Depending on the per-

turbation strength x, we have identified two main regimes: The Linear Response Theory

regime, where perturbation theory is applicable, and the nonperturbative regime. In

the latter regime, we have found a novel decay law for the fidelity, which reflects the

critical nature of the system.
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Next, we studied wavepacket dynamics of the Harper model at a metal-insulator tran-

sition and identified the effects of nonlinearity (induced by interatomic or wave-matter

interactions) in wavepacket dynamics. Specifically, we have obtained bounds for the

power-law exponent of the temporal spreading of the wavepacket variance. These

bounds are dictated by the fractal dimension of the LDoS of the linear system at crtical-

ity. Above some nonlinearity strength, this nonlinear spreading appears and persists up

to time t∗ ∼ χ1/Dµ2 , which depends parametrically on the nonlinearity strength. After

this time, the linear spreading of the second moment is restored while other moments

remain affected by the nonlinearity. We also found a scaling relation for the central part

of the evolving profile that applies to any time and any nonlinearity strength.

The last part of the thesis deals with the decay process of atomic BECs from leaking

optical lattices and the existence of rare events such as avalanches (or jumps) in the

outgoing atomic flux. For a certain range of (rescaled) nonlinearity Λ∗ ∼ O(1), there

exists a power-law distribution P(J) ∼ J−α for the avalanches, suggesting the existence

of a phase transition. We propose an explanation of this phenomenon based on the

phase-space analysis of a reduced three-site system that captures the dynamics of an

avalanche event. In particular, we argue that the statistics of jumps is equivalent to the

statistics of island size in the mixed phase space of the three-site model. To this end,

we have constructed a simple hierarchical model which mimics the ‘island-over-island’

self-similar structure of a mixed phase-space and gives a power-law distribution of island

sizes. Our heurestic modeling allows us to provide bounds on the observed power-law

exponent α, i.e. 1 < α < 3. These bounds are consistent with our observed power-law

jump distribution in the BECs in leaking optical lattices.

There is still plenty of work to be done for future research along the direction of this

thesis’ studies. Despite the success of the RMT approach, the applicability of RMT

in modeling dynamical systems at criticality still remains a matter of conjecture. One

should be careful under which conditions RMT is applicable. Specifically, one should

be aware that there is a hierarchy of challenges where the applicability of the RMT
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conjecture should be tested, namely the study of spectral statistics, the study of eigen-

states, and the study of quantum dynamics. While the former two issues have been

studied extensively [50], the aspect of dynamics is barely treated. As a continuation

of the fidelity study of critical systems, we are currently in the process of studying a

periodically kicked rotor with a logarithmic potential singularity [180]. The main focus

of this on-going project will be to address the issue of correspondence between the RMT

model and a dynamical system with critical behavior within the framework of fidelity.

Since such system possesses a well-defined classical limit, it is of interest to see up to

which point the RMT predictions are valid.

As for the study of wavepacket dynamics, recently there has been much interest in the

study of disordered DNLSE [120,121] in this direction. However, the focus of these works

have been in the localized regime. It is of immense interest to study the wavepacket

dynamics of Anderson systems at critical conditions, such as three dimensional random

media at the Anderson Metal-Insulator Transition, in the presence of nonlinearity. We

hope that our results of the nonlinear Harper model will shed some light on the interplay

of nonlinearity and criticality in these systems.

Finally, on the outlook of future work on the DNLSE with leaking boundaries, many

issues in our current work demand more rigorous studies and clarifications. In particular,

the distribution of island sizes in mixed space is itself a very important question relevant

in various areas in physics. Although the conjecture of power-law distribution of island

sizes has been verified numerically in the kicked rotor and our heuristic model provided a

satisfactory explanation, more rigorous work along this direction is needed. In addition,

the nature and the origin of the phase transition remains an open question, especially on

the aspects of symmetry-breaking study and the phase diagram analysis of this system.

Another interesting future direction is to investigate the link of the observed phase

transition to the physics of self-organized criticality.

The study of wave propagation in complex media is indeed an exciting scientific arena.
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Recent experimental achievements in optics and atomic physics have pushed forward our

understanding in this area, but at the same time opened up many new and intriguing

questions. Among them, one of the most prominent questions would be to understand

the interplay between nonlinearity (induced by matter-wave or particle-particle interac-

tions) and disorder. As the poet said, “Hope that your road to Ithaka will be long, full

of adventure, full of discovery”, so too is the exciting path of scientific endeavor in this

direction.



Appendix A

Level Spacing Distributions

We shall now proceed with the calculation, which is often called Wigner’s surmise, using

2 × 2 matrices to predict the distribution of the level spacings P (S) in the GOE and

GUE cases. This calculation is based on the discussion in Ref. [78].

Let the Hamiltonian be

H =

 H11 H12

H∗12 H22

 =

 a+ b x+ iy

x− iy a− b

 a, b, x, y ∈ R.

In the GOE case, H is real and symmetric so y vanishes, whereas for the GUE case

y 6= 0. Since there are only two eigenvalues associated with a 2× 2 matrix, there is only

one level spacing to be considered

S = E2 − E1 =
√
b2 + x2 + y2. (A.1)

Assuming a Gaussian distribution W for the variables b, x and y, we obtain in the GOE
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case

P (S) =
∫ ∞
−∞

∫ ∞
−∞

db dx W (b, x) δ(S −
√
b2 + x2)

= 2π
∫ ∞

0
dr r

1√
2πσ

e−
r2

2σ2 δ(S − r)

=
√

2π
σ

S e−
S2

2σ2

=
π

2
S e−

π
4
S2

(A.2)

where in the last step, we used the normalization condition of probability function

P (S).

Applying the same calculation for the GUE case leads to

P (S) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

db dx dy W (b, x, y) δ(S −
√
b2 + x2 + y2)

= 4π
∫ ∞

0
dr r2 1√

2πσ
e−

r2

2σ2 δ(S − r)

=
√

8π
σ

S2 e−
S2

2σ2

=
32
π2
S2 e−

4
π
S2
. (A.3)

For the case of GSE, one would use a 4× 4 matrix and obtain the result

P (S) =
218

36π3
S4e−

64
9π
S2
. (A.4)

For the sake of completeness, let us calculate the level spacing distribution for an inte-

grable system, where the number of constants of motion equals the number of degrees of

freedom. It turns out that the matrix representation of the corresponding Hamiltonian

takes a diagonal form due to symmetry considerations. As each eigenvalue corresponds

to its own symmetry class, it is reasonable to assume that they are uncorrelated. There-

fore, the probability P (S)dS to find an eigenvalue in the interval [S, S+ dS], but not in

[0, S], can be easily calculated. We divide the interval [0, S] into N equidistant subin-

tervals of length S/N . Since the eigenvalues are uncorrelated, the probability to find no
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eigenvalue in the interval [0, S] can be written as limn→∞
(
1− S

N

)N . Hence, we derive

the probability of finding an eigenvalue in the interval [S, S + dS]

P (S)dS = lim
N→∞

(
1− S

N

)N
dS (A.5)

where upon evaluating the limit gives the Poisson nearest neighbor distribution

P (S) = e−S . (A.6)



Appendix B

Derivation of the DNLSE in

Nonlinear Waveguides

Here, we follow the discussion in [9] and consider a system of coupled nonlinear waveg-

uides (see Figure B.1).

From Ref. [181], the amplitude a
(n)
µ of the µth mode of the nth guide satisfies the

following equation

−ida
(n)
µ

dz
=

ω

4Pµ

∫
dx dy E(n)

µ ·P′, (B.1)

where the axes of the guides are along the z direction, E(n)
µ the electric field of the

µth mode in the nth guide, Pµ is the power in the µth mode and P′ is the perturbing

polarization due to linear and nonlinear effects. The nth guide has the perturbing

polarization that reads

P′/ε0 = E(n)δ + (δ + ε)
[
E(n+1) + E(n−1)

]
+ χ(3)

[
|E(n)|2 + |E(n−1)|2 + |E(n+1)|2

]
E(n),

(B.2)

where ε is the dielectric constant of the host material, ε+δ that of the guide material, E(i)

the total field contributed by the ith guide and χ(3) is the third-order susceptibility [11].

Substituting Eq. (B.2) into Eq. (B.1) then yields
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Figure B.1: A system of coupled nonlinear waveguides extending in the z-direction. Figure

from [9].

−ida
(n)
µ

dz
=

ωε0

4Pµ

∫
dxdy

[
δ
(
E(n)
µ

)∗
·E(n) + (ε+ δ)

(
E(n)
µ

)∗
·
(
E(n−1) + E(n+1)

)
+ χ(3)

(
|E(n)|2 + |E(n−1)|2 + |E(n+1)|2

){(
E(n)
µ

)∗
·E(n)

}]
. (B.3)

If we assume that we are working with the lowest single-mode for each guide, such that

E(n) = a
(n)
1 E(n)

1 and thus Eq. (B.3) turns into

−ida(n)
1 /dz = Q

(n)
1 a

(n)
1 +Qn,n−1a

(n−1)
1 +Qn,n+1a

(n+1)
1 +Q

(n)
3 |a

(n)
1 |

2a
(n)
1 (B.4)

with coefficients

Q
(n)
1 =

ωε0

4P1

∫
dxdyδ|E(n)|2 , (B.5)

Q
(n)
3 =

ωε0

4P1
χ(3)

∫
dxdyδ|E(n)|4 , (B.6)

Qnl =
ωε0

4P1

∫
dxdy(ε+ δ)

(
E(n)

)∗
·E(l), (n 6= l). (B.7)

(B.8)

Here, we assume that these coefficients are uniform for each wave guide, such that

Q1 = Q
(n)
1 , Qn,n−1 = Qn,n+1 = −V and Q(n)

3 = Q3 for all n. Then, Eq. (B.4) turns into
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(dropping the subscript ‘1’)

−ida(n)/dz = Q1a
(n)
1 − V (a(n−1) + a(n+1)) +Q3|a(n)|2a(n). (B.9)

Now, writing a(n) in terms of power and phase variables, a(n) = ψn
√
P exp (iQnz) where

P is the total input power and further transforming γ = −Q3P , we arrive at

i
dψn
dz

= γ|ψn|2ψn + V (ψn+1 − ψn−1) (B.10)

which is just the DNLSE in Eq. (2.50), disguised with the time replaced by the z co-

ordinate and the other variables transformed accordingly. Here, the analogue of norm

conservation in the DNLSE is the power conservation

∑
n

|ψn|2 = 1. (B.11)

These nonlinear coupled waveguides are good candidates for optical switching purpose.

In nonlinear lattice, the effect of self-trapping is generic so that in the nonlinear waveg-

uides, the self-trapping effect could be used in the design of optical ultrafast switches

with applications in optical computers [10,181].



Appendix C

Application of the DNLSE in

Bose-Einstein Condensates

Here, we shall follow the derivation in [78] of the DNLSE in the decription of BECs

loaded in an optical lattice.

To preserve atomic gases in its metastable phase for sufficiently long time, during laser

and evaporative cooling, the density of the particle is kept very low (around 1014−16

particles/cm3). This is possible in dilute and cold gases, and as a result three-body

collisions are rare events, allowing us to consider only two-body collisions, which can be

described by s-wave scattering processes [12].

In the second quantization, the many-body Hamiltonian describing N interacting bosons

confined by an external potential is given by

Ĥ =
∫
dr Ψ̂†(r)

[
− ~2

2m
∇2 + Vlat(r) + Vext(r)

]
Ψ̂(r)

+
1
2

∫ ∫
dr dr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r) (C.1)

where Ψ̂(r) and Ψ̂†(r) are the bosonic field operators that annihilate and create a particle
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at position r respectively, V (r − r′) is the two-body inter-atomic potential, Vlat(r)

is the optical lattice potential and Vext(r) describes a possibly additional potential

that is slowly varying along the lattice such as the magnetic trap used for evaporative

cooling.

Since the dominant inter-atomic interaction comes from s-wave scattering and that the

particle density is very low, we can approximate two-body interaction potential V (r−r′)

with a delta-like potential [182]

V (r− r′) ≈ 4πas~2

m
× δ(r− r′) (C.2)

where as is the s-wave scattering length and m is the atomic mass.

With this simplification, we take advantage of the periodic nature of a lattice, i.e.

Vlat(r) = Vlat(r + d) with lattice vector d. For a single atom moving in a potential

Vlat, we have the Bloch functions φq,n(r) = eiqruq,n(r) with uq,n(r) having the same

periodicity as the lattice and q the quasi-momentum.

Since this work is interested only in the deep lattices, as many experiments are [151,183],

it is convenient to work in the Wannier basis where the eigenfunctions are localized at

each lattice site. The Wannier-functions are obtained via a uniform transformation of

the Bloch basis and reads

wn(r− ri) =
1√
f

∑
q

e−iqriφq,n(r) (C.3)

where the sum is taken over the quasi-momentum in the first Brillouin zone and f is

the number of lattice sites.

Assuming the lattice is deep enough such that the chemcial potential is too small to

excite states outside the first Bloch band [184], we can thus expand the field operator

Ψ̂ in the Hamiltonian (C.1) in the Wannier basis wn(r − ri), keeping only the lowest

band

Ψ̂(r) =
f∑
i=1

b̂iw0(r− ri) (C.4)
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where b̂i is the bosonic annhilation operator at site i.

Substituing Eq. (C.4) into Eq. (C.1) yields the Bose-Hubbard Hamiltonian(BHH) [184]

Ĥ =
f∑
i=1

νi b̂
†
i b̂i +

1
2

f∑
i=1

Ui b̂
†
i b̂
†
i b̂i b̂i −

∑
<i,j>

kij b̂
†
i b̂j (C.5)

with < i, j > denoting summation over adjacent sites j = i ± 1, and the following

parameters

νi =
∫
d3r Vext(r)|w0(r− ri)|2

Ui =
4πas~2

m

∫
d3r |w0(r− ri)|4

kij =
∫
d3r w∗0(r− ri)

[
− ~2

2m
∇2 + Vlat(r)

]
w0(r− rj=i±1). (C.6)

From the canonical commutator relations of the bosonic operators b̂i and b̂†i

[b̂i, b̂
†
j ] = δi,j , (C.7)

and the number operator, defined as

n̂i = b̂†i b̂i, (C.8)

we then reach the following

Ĥ =
f∑
i=1

νi n̂i +
1
2

f∑
i=1

Ui n̂i (n̂i − 1)−
∑
<i,j>

kij b̂
†
i b̂j (C.9)

The νi and Ui are the on-site potential and the on-site interaction strength at site i re-

spectively while kij accounts for the coupling strength that describes the tunneling effect

of particle between neighboring sites, which also represents the kinetic energy.

We would like to investigate the semiclasssical limit of the BHH. For simplicity’s sake,

let us set Ui = U and kij = k for all i for uniform interaction strength and tunneling rate

across the whole lattice. While taking the classical limit N → ∞, we would want the
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interaction strength U to be taken into consideration properly. Let us define rescaled

creation and annihilation operators

ĉ†i =
1√
N
b̂†i ; ˆ̃ni =

1
N
n̂i, (C.10)

with N being the total number of bosons. This then leads to the following Hamilto-

nian
Ĥ

N
=

f∑
i=1

νi ˆ̃ni +
UN

2

f∑
i=1

ˆ̃ni (ˆ̃ni −
1
N

)− k
∑
<i,j>

ĉ†i ĉj . (C.11)

Hence, the appropriate classical limit corresponds to keeping both UN and k constant

to preserve the same effective nonlinearity in the dynamics.

Now we have the following commutator relations for the rescaled operators

[ĉi, ĉ
†
j ] =

1
N
δi,j , (C.12)

which vanishes for large particle number N . Therefore since these two operators com-

mute in the limit N →∞, we can treat them as c-number.

Now taking the classical limit of N →∞ but keeping both UN and k constant to obtain

the classical Hamiltonian H, we express the c-numbers as

ĉj 7→ ψj ; ĉ†j 7→ ψ∗j , (C.13)

where the ψj and ψ∗j are complex amplitudes.

Putting this into Hamiltonian (C.11) leads to

H̃ =
H
N

=
f∑
i=1

νi |ψi|2 +
UN

2

f∑
i=1

|ψi|4 − k
∑
<i,j>

ψ∗i ψj . (C.14)

The amplitudes are conjugate variables with respect to the Hamiltonian iH̃ giving the

canonical equations

i
∂ψj
∂t

=
∂H̃
∂ψ∗j

;
∂ψ∗j
∂t

= − ∂H̃
∂ψj

, (C.15)
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resulting in the equations of motion:

i
∂ψj
∂t

= UN |ψj |2ψj + νjψj − k(ψj+1 + ψj−1). (C.16)

This is then the DNLSE in Eq. (2.50) with appropriate variable changes.



Appendix D

Fidelity and Decoherence

It is often the case that a quantum system is not perfectly isolated from its environ-

ment. The interaction of the system with the environment then influences the outcome

of the experiment. In particular, since interference is a very essential and important

phenomenon in quantum mechanics, one would like to understand how the enviroment

affects interference phenomena in quantum systems. The study of how decoherence, i.e.

the loss of interference, is induced through interaction with the environment is indeed

a fundamental question in quantum mechanics. Following Ref . [78], we shall discuss

the role of fidelity as a measure of decoherence in the prototype example of interference

experiment – the Aharonov-Bohm (AB) ring [82,83] experiment.

A schematic illustration of the AB ring experiment is presented in Fig. D.1. A charge

particle travels through a ring geometry from point A to point B either by taking the left

path or the right path. One recognizes immediately that this is the familiar double-slit

experiment with appropriate interpretations on the physical set-ups. A perpendicular

magnetic field is present inside the ring and it is further assumed that the interaction

of the system with the bath (i.e. the environment) only occurs along the right path

and that the back-reaction of the bath on the system is small [82]. Since this is a two-

path experiment, one would expect to observe interference pattern at point B. In the
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Figure D.1: Schematic illustration of the AB-ring experiment where a particle travels from

point A to B through a ring geometry with a perpendicular magnetic field. At B, the interef-

erence is measured and the particle can arrive at B through either the left or the right path.

The interaction of the system with the bath is assumed to occur along the right bath only. The

presence of the bath will affect interference pattern at point B. Figure from [83].

beginning of the experiment, where time t = 0, we can describe the whole set-up, i.e.

the system with the bath, as a direct product of the system’s state with the initial state

of the bath χ0(η) where η is the internal degress of freedom of the bath. The system’s

state is a superposition of the left path l(x, t) and the right path r(x, t) leading to the

overall state

ψA(t = 0) = [l(x = A, t = 0) + r(x = A, t = 0)]⊗ χ0(η) (D.1)

Assuming the particle will arrive at point B after time T taking either of the path, the

wavefunction at point x = B is described by

ψB(T ) = l(B, T )⊗ χl(η) + r(B, T )⊗ χr(η) (D.2)

where in general the bath’s state will evolve differently depending on which path the

particle takes.
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One then can examine the interference term which is just

2 <[l∗(B, T ) r(B, T )]
∫
dη χ∗l (η)χr(η) (D.3)

where the integration is done over the bath’s degrees of freedom because in experiment,

one measures only the state of the system and therefore has no information on the state

of the bath. Hence, one has to sum over all possible states of the bath and thus ‘traces’

over the bath.

In the case where the particle has no interaction with the bath, then χl = χr and the in-

tegral in Eq. (D.3) will be unity. One then recovers the expression 2 <[l∗(B, T ) r(B, T )]

in the standard AB-ring experiment in the absence of interaction with the environment.

In the presence of coupling with the bath, however, this term is multiplied by a factor

which takes complex values with norm between zero and unity. In the extreme case of

this factor being zero, interference pattern is lost !

It is then natural to define this factor as a measure of decoherence. In fact, the fidelity

amplitude is defined through this multiplicative factor and its absolute-value-square

gives the fidelity

F (t) =
∣∣∣∣∫ dη χ∗l (η)χr(η)

∣∣∣∣2 (D.4)

Here, the connection between fidelity and decoherence is clear: Fidelity quantifies the

strength of interference where high fidelity is equivalent to more dominant interference

and low fidelity corresponds to loss of interference.

Here, the interpretation of fidelity is two-fold. One can see it from the perspective

of the system or of the environment. In the former interpretation, the partial wave

r(x, t) acquires an additional phase due to interaction with the possible dynamics and

state of the bath. At the extreme case where this phase is π/2, the effect is such that

the interference is destroyed, leading to complete decoherence. Adopting the latter

interpretation from the perspective of the environment, if the bath is not affected by

the moving particle, then the interference pattern remains unchanged. However, if the
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bath is affected by the particle’s motion, then one could extract information about the

particle’s path. The extreme case, where one knows exactly which path the particle has

taken, corresponds to a complete loss of the interference pattern. This reminds us again

of the familiar double-slit experiment, where information about the particle’s path will

cause intereference pattern to be lost.



Appendix E

Derivation of xc and xprt for the

WLRM models

We follow the discussion in Ref. [110] to derive xc and xprt in the framework of local

density of states (LDoS) analysis. The LDoS is a major tool for characterizing para-

metric evolution of eigenstates. Recall that for the WLRM model, we are dealing with

Hamiltonian of the type

H = H0 + xB. (E.1)

with variance of B given by

〈σ2
nm〉 =

1
1 + |n−mb |2

. (E.2)

The overlap of the eigenstate |n(x)〉 (for a given perturbation strength x) with the

eigenstate |m(0)〉 of x = 0 Hamiltonian (i.e. the unperturbed Hamiltonian H0) is given

by

P (n|m) = |〈n(x)|m(0) 〉|2 . (E.3)

By averaging over the reference level m, up to trivial scaling, this is the so-called LDoS

P (r = n−m).
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For x = 0, it is trivial to see that P (r) = δr,0 , due to orthogonality. As x is in-

creased, using standard first-order perturbation theory, one gets PFOPT ≈ 1 for r = 0,

while

PFOPT (r) =
x2 |Bnm|2

(En − Em)2 =
x2b2

∆2 (b2 + r2) r2
for r 6= 0 , (E.4)

where ∆ is the mean level spacing. We have substituted the variance in Eq. (E.2) into

the second equality. However, standard first-order perturbation theory is only valid up

to some perturbation strength xc, where xc is the pertubation strength needed to mix

neighboring levels only. We shall give an estimation of xc later.

As x is increased beyond xc, assuming the validity of infinite order perturbation theory,

one can show that [110]

PPRT (r) =
x2 |Bnm|2

Γ2 + (En − Em)2 =
x2b2

∆2 (b2 + r2)
[
(Γ/∆)2 + r2

] . (E.5)

The energy scale Γ defines the region where a nonperturbative mixing of levels occurs.

By imposing normalization of PPRT (r), we obtain

Γ =
b∆
2

[√
1 +

4πx2

b∆2
− 1

]
. (E.6)

For Γ� ∆, as can been seen from Eq. (E.5), PPRT (r) ≈ PFOPT (r). Therefore, we can

estimate xc by requesting that Γ(xc) ≈ ∆, thus arriving at

xc ≈
∆√
π

√
1 + 1/b . (E.7)

To find an estimate for the perturbation strength xprt up to which the PPRT (r) is valid,

we compare the dispersion of PPRT (r)

δEPRT ≡ ∆×
√∑

r

r2PPRT (r) (E.8)

with the dispersion of the actual LDoS

δE = x
∑
n6=m
|Bnm|2 . (E.9)



Appendix E. Derivation of xc and xprt for the WLRM models 106

We can approximate the sums above by integrals, and in particular for the WLRM

model we obtain

δEPRT ≈ x
√
πb (b+ Γ/∆)−1/2 , (E.10)

and

δE ≈ x
√

2b [π/2− arctan(1/b)]1/2 . (E.11)

The border xprt is estimated as the point where δEPRT (xprt) ≈ δE(xprt), which leads

to

xprt ≈ ∆
√
b

√
π − 2 [π/2− arctan(1/b)]
2 [π/2− arctan(1/b)]

. (E.12)



Appendix F

Two Limits of the Participation

Ratio

We will approximate the participation ratio PR for the case of γ = 0 in the two extremes

of Λ.

Firstly, in the strong nonlinearity regime, there are O(M) number of DB’s and each

site is effectively decoupled from other sites, so each site will retain the same density

for all time. Since the initial condition is such that the distribution of density at each

site follows a uniform distribution, at other times, one expects the density to follows a

uniform distribution, i.e. P(y) is constant with y = ψn. We assume that y’s are drawn

from a uniform distribution and y runs from −b to +b. Therefore,
M∑
n=1

|ψn|4 = M < |ψn|4 >n≈M < |ψn|4 >ψn (F.1)

In the second step, we assume that taking an average over all sites is approximately the

same as taking an average over all possible ψn’s.

Let us turn the right-hand side of the above equation into an integral,

M < |ψ|4 >ψ= M

∫ b

−b
|ψ|4P (ψ)d(ψ) = M

∫ b

−b
y4P (y)dy =

M

2b

∫ b

−b
y4dy =

Mb4

5
(F.2)
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where we have used the fact that P (y) is a uniform distribution and hence P (y) =

1/2b.

Applying the same technique for the normalization condition of the number of particles,

we get

M∑
n=1

|ψn|2 = M < |ψn|2 >n≈M < |ψ|2 >ψ= M

∫ b

−b
y2P (y)dy =

M

2b

∫ b

−b
y2dy =

Mb2

3
= 1

(F.3)

which leads to b =
√

3/M . Thus, we obtain

M
M∑
n=1

|ψn|4 ≈
M2b4

5
=

9
5

(F.4)

and the participation ratio is 5/9.

In the linear regime, we found that the distribution of atomic density follows an expo-

nential distribution, corresponding to the fact that in a linear lattice it is exponentially

less likely to find higher excitations. Let P (x) = Ae−Bx where x = |ψn|2, and B > 0.

We should now proceed to determine A and B.

We know that
∫ 1

0 P (x)dx = 1 from normalization of probabillity function. Then,∫ 1

0
P (x)dx = A

∫ 1

0
e−Bxdx = 1⇒ A = B/(1− e−B) (F.5)

Secondly, we apply the normalization condition for the total number of atoms

M∑
n=1

|ψn|2 = M < |ψn|2 >n≈M < x >x= M

∫ 1

0
xP (x)dx = 1 (F.6)

But

M

∫ 1

0
xP (x)dx = MA

∫ 1

0
xe−Bxdx =

−MAe−B

B
+
M

B

∫ 1

0
P (x)dx (F.7)

Notice that the integral term on the right is equal to one, due to normalization of

probability distribution. Setting the RHS equal to one and using Eq. (F.5) (i.e. A =

B/(1− e−B)) to substitue for A, we get

−MAe−B

B
+
M

B
= 1⇒ −Me−B

1− e−B
+
M

B
= 1 (F.8)
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Figure F.1: Distribution of density in the linear regime (i.e. Λ = 0 and γ = 0). Here, x = ψn

and the diamonds are numerical results for different M ’s. We see excellent agreement between

the numerical results and Eq. (F.9).

For M → ∞ , e−M → 0. Therefore −Me−B

1−e−B ≈
−M
eM
→ 0 for M → ∞. Since the first

term goes to zero, we obtain B = M as a solution in the thermodynamic limit. In fact,

this turns out to be the only solution.

We then get A = B/(1 − e−B) = M/(1 − e−M ). But e−M → 0 giving A = M , and

thus

P (x) = Me−Mx. (F.9)

In fact, numerical results have verified Eq. (F.9) (see Fig. F.1).
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To determine PR,

M < |ψ|4 >ψ≈M
∫ 1

0
x2P (x)dx = M

∫ 1

0
x2Me−Mxdx

= −Me−M + 2
(∫ 1

0
xMe−Mxdx

)
(F.10)

= −Me−M + 2
(
M

∫ 1

0
xP (x)dx

)
(F.11)

(F.12)

But the term in the bracket on the right is just the total density and is therefore equal

to one, whereas the first term −M/eM → 0 when M →∞.

Hence, we have
M∑
n=1

|ψn|4 ≈M < |ψ|4 >ψ= 2 (F.13)

leading to PR = 1
2 .



Appendix G

Numerical Estimation of

Distribution of Island Sizes

Here, we aim to verify the hypothesis that the sizes of islands of a typical Hamiltonian

mixed phase space system follow a power-law distribution. This is done through nu-

merical estimation of the distribution of island sizes in the kicked rotor (in the mixed

phase space regime).

We consider a region R (see rectangular region in Fig. G.1) in the phase space of the

kicked rotor containing an island (with its daughter islands) originating from a period

1 resonance 1. We start two trajectories at random initial conditions r and r + s within

R separated by a distance s = |s|. We follow the trajectories up to time T and proclaim

a trajectory to be inside an island if it has not left the region R, with less and less error

with increasing T . Eventually, we want to take the limit of T → ∞. The quantity we

are going to study is

pin,out(s) = Probability that the first trajecteroy is inside an island and the second is not.

1For a period N resonance, we could do the same with the N-th iteration of the map.

111



Appendix G. Numerical Estimation of Distribution of Island Sizes 112

Figure G.1: Region R.

This probes the circumferences of the islands and will help us to determine the distri-

bution of island sizes.

Let pI(R) be the island size distribution that we are interested in, AI the total area of

islands in R and A the total area of R. The probability of an arbitrarily chosen point

to lie inside an island is P (in) = AI/A, where AI =
∫
pI(R)πR2 dR.

The probability for a point known to be regular to lie inside an island of linear dimension

R (e.g. maximum diameter) is given by

P (R|in) =
pI(R)πR2

AI
.

Now let us start with a point r0 that is inside an island of size R (see Fig. G.2a). It

contributes to P (R|in) with

P (r0, R|in) =
pI(R)
AI

.
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R
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r0 x

s

{

{

a) b)

2R r0

s

c)

Q

s {

Figure G.2: Sketches for the two cases R� s and R� s

We want to know what is the probability Pin,out(s,R) that a point inside a neighborhood

of radius s around r0 lies outside the island, given that r0 lies inside an island of size

R.

First we deal with the case when R � s. If we approximate the island boundary by

a straight line, the read shared area indicated in Fig. G.2b is the area that we are

interested in. Thus, for a fixed r0 in an island of size R, the fraction of area in its

s-neighborhood that is outside the island is approximated by

P (s, out|r0, R) =
1
πs2

 2
∫ s
x

√
s2 − x′2dx′ if r0 ∈ Q

0 else.

The only non-zero contributions come from the r0’s inside an island and are near the

island boundary, i.e. r0 ∈ Q.
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We can thus write

Pin,out(s,R) =
∫∫

Island

P (r0, R|in)P (s, out|r0R)d2r0

=
pI(R)
AI

∫∫
Q

s∫
x

2
πs2

√
s2 − x′2dx′d2r0

=
pI(R)
AI

2
πs2

2πR∫
0

s∫
0

s∫
x

√
s2 − x′2dx′ dx dy

=
pI(R)
AI

4R
s2

s∫
0

1
4

(
πs2 − 2x

√
s2 − x2 − 2s2 arctan

x√
s2 − x2

)
dx

=
pI(R)
AI

4R
s2

1
4

[
πs2x+

2
3
(
s2 − x2

)3/2 − 2s2

(√
s2 − x2 + x arctan

x√
s2 − x2

)]∣∣∣∣s
0

=
pI(R)
AI

4R
s2

s3

3
=

4
3AI

RpI(R)s (forR� s)

In the case of R� s, we have (see Fig. G.2c)

P (s, out|r0, R) =
πs2 − πR2

πs2
.

And thus

Pin,out(s,R) =
∫∫

Island

P (r0, R|in)P (s, out|r0R)d2r0

=
pI(R)
AI

× s2 −R2

s2
×
∫∫

Island

d2r0

=
πR2

AI
pI(R)

s2 −R2

s2

=
πR2

AI
pI(R)

(
1−R2/s2

)
(forR� s).

In the numerics, we look at point that are on the perimeter of the s-neighborhood, thus

we have the contributions from all island sizes, thus we have

pin,out(s) =

Rmax∫
0

d

ds
Pin,out(s,R) dR.
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Substituting

d

ds
Pin,out(s,R) =

 4
3AI

RpI(R) if s� R

2πR4

AI
pI(R) 1

s3
if s� R

and splitting the integral (thereby approximating the integral by its two limiting cases),

we get

pin,out(s) =

s∫
0

2πR4

AI
pI(R)

1
s3
dR+

∫ Rmax

s

4
3AI

RpI(R)dR.

We further assume that

pI(R) = β R−α(with α < 3),

where α is what we will numerically measure. We thus have

pin,out(s) =
2πβ
AIs3

s∫
0

R4−αdR+
4β

3AI

Rmax∫
s

R1−αdR

=
2πβ
AIs3

s5−α

5− α
+

4β
3AI(2− α)

[
R2−α
max − s2−α] ,

and can thus be written in the form

pin,out(s) = C0 + C1s
2−α. (G.1)

Figure G.3 shows the numerical results for pin.,out(s) for three different maximal iteration

times T with K = 3.5. The constant C0 was first estimated by a linear fit and then

subtracted. For increasing T , the curves fit better and better the form of Eq. (G.1).

The numerical value for the exponent (for the largest time T ) is m ≈ 0.58. Thus, for

the kicked rotor with K = 3.5, we have estimated a power-law distribution of island

sizes with an exponent α = 2−m = 1.42.
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Figure G.3: Numerical estimation of the distribution of island sizes in the kicked rotor. We

plot an estimate of the distribution of a measure of circumference of islands vs circumference

width. The power-law here gives rise to a power-law distribution of island sizes with exponent

α = 2−m = 1.42. The kicking strength K = 3.5.



Appendix H

Estimation of the Lower-bound of

Λ∗

We will give an estimate for the lower-bound of the critical interaction strength Λ∗. We

postulate that at Λ = Λ∗, the system self-organizes to create an optimum number of

breathers so as to minimumize the energy.

Let the number of breathers K < M (with K > 0) and for simplicity’s sake, we assume

that each breather is a δ-excitation. Let the typical density of these breathers be

Xb =
〈
|ψn|2

〉
K

, where the average is taken over K breathers in the system. Let Xs be

the average density of the lattice, excluding these K breathers. Then, normalization

condition is given by KXb + (M −K)Xs = 1 and thus

Xs =
1−KXb

M −K
(H.1)

With the above approximations, the Hamiltonian from Eq. (5.1) (with µn = 0) then
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reads

H = U
(
KX2

b + (M −K)X2
s

)
− TXs(M −K)

H̃ ≡ 2H/T = χ
(
KX2

b + (M −K)X2
s

)
− 2Xs(M −K)

(H.2)

Inserting Xs from Eq. (H.1) yields

H̃ = χ

(
KX2

b +
(1−KXb)2

M −K

)
− 2(1−KXb)

= X2
b

χMK

M −K
+Xb

(
− 2Kχ
M −K

+ 2K
)

+
χ

M −K
− 2 .

Since the leading coefficient is positive, we seek the configuration of breathers (i.e. the

value Xb) that minimizes the energy at ∂H̃
∂Xb

= 0. Simple differentiation gives

XHmin
b =

1
M
− 1
χ

+
K

χM
(H.3)

For such configuration to exist, the condition Xb ≥ 0 must be fulfilled, leading to

0 ≤ XHmin
b

⇒ 0 ≤ 1
M
− 1
χ

+
K

χM

⇒ −K/M + 1 ≤ χ/M

⇒ −K/M + 1 ≤ Λ (H.4)

where we recall that Λ = χ/M .

We postulate that in the critical regime where Λ = Λ∗, this optimum configuration of

breathers that minimizes the energy exists. Hence, in the thermodynamic limit where

M � K, we have

Λ∗ ≥ 1. (H.5)



Bibliography

[1] G. S. Ng, J. Bodyfelt, and T. Kottos, Phys. Rev. Lett. 97, 256404 (2006).

[2] G. S. Ng and T. Kottos, Phys. Rev. B 75, 205120 (2007).

[3] G. S. Ng, H. Hennig, R. Fleischmann, T. Kottos and T. Geisel (in preparation).

[4] H. J. Jensen, Self-Organized Criticality (Cambridge University Press, 1998).

[5] C. Kittel, Introduction to Solid State Physics (Wiley, 2004).

[6] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[7] S. John, Phys. Rev. Lett. 53, 2169 (1984).

[8] F. M. Izrailev, Phys. Rep. 196, 299 (1990).

[9] D. Hennig, G. P. Tsironis, Phys. Rep. 307, 333 (1999).

[10] M.I. Molina and G.P. Tsironis. Physica D 65 (1993).

[11] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge

University Press, 1991).

[12] F. Dalfovo, S. Giorgini and L. P. Pitaevskii, Rev. Mod. Phys. 71, 463 (1999).

[13] P. W. Anderson, Rev. Mod. Phys. 50, 191 (1978).

[14] N. F. Mott and W. D. Twose, Adv. Phys. 10,107 (1961).

119



BIBLIOGRAPHY 120

[15] R. E. Borland, Proc. R. Soc. London Ser. A 274, 529 (1963).

[16] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys.

REv. Lett. 42, 673 (1979).

[17] D. J. Thouless, Rep. Prog. Phys. 13, 93 (1974).

[18] N. F. Mott, M. Pepper, S. Pollitt, R. H. Wallis and C. J. Adkins, Proc. Roy. Soc.

London Ser. A 345, 169 (1975).

[19] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials,

Clarendon Press, Oxford (1971).

[20] E. N. Economou and M. H. Cohen, Phys. Rev. B 5, 2931 (1973).

[21] D. C. Licciardello and E. N. Economou, Phys. Rev. B 11, 3697 (1975).

[22] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

[23] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).

[24] E. N. Economou, Green’s functions in Quantum Physics (Springer-Verlag, 1990).

[25] P. W. Anderson, Phil. Mag. B, 52, 505 (1985).

[26] F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nature 398, 206 (1999).

[27] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) 390,

671 (1997).

[28] T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007).

[29] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H.

Chang, Appl. Phys.Lett. 73, 3656 (1998).

[30] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, Phys.

Rev. Lett. 82, 2278 (1999).

[31] V. Milner and A. Z. Genack, Phys. Rev. Lett. 94, 073901 (2005).



BIBLIOGRAPHY 121

[32] M. Wilson, Phys. Today 60, 22 (2007).

[33] H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963)

[34] F. Delyon, Y. Levy and B. Souillard, J. Stat. Phys. 41, 375 (1985); Phys. Rev.

Lett., 55, 618 (1985), and references therein.

[35] D. J. Thouless, J. Phys. C 5, 77 (1972).

[36] P. Llyod, J. Phys. C 2, 1717 (1969).

[37] A. M. Garcia-Garcia, and J. Wang, Phys. Rev. Lett. 94, 244102 (2005).

[38] A. Furusaki, Recent progress in the theory of Anderson localization, Hong Kong

Forum of Condensed Matter Phyiscs: Past, Present and Future (2006).

[39] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1993).

[40] D. Braun, E. Hofstetter, G. Montambaux, and A. MacKinnon, Phys. Rev. B 64,

155107 (2001).

[41] D. G. Polyakov, Phys. Rev. Lett. 81, 4696 (1998).

[42] R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, Phys. Rev. Lett. 79, 1959

(1997).

[43] J. T. Chalker and G. J. Daniell, Phys. Rev. Lett. 61, 593 (1988).

[44] J. T. Chalker, Physica (Amsterdam) 167A, 253 (1990).

[45] B. Huckestein and R. Klesse, Phys. Rev. B 59, 9714 (1999).

[46] J. A. Mendez-Bermudez and T. Kottos, Phys. Rev. B 72, 064108 (2005).

[47] R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001); F. M.

Cucchietti, H. M. Pastawski, and R. Jalabert, Physica (Amsterdam) 283A, 285

(2000); F. M. Cucchietti, H. M. Pastawski, and D. A. Wisniacki, Phys. Rev. E

65, 046209 (2002).



BIBLIOGRAPHY 122

[48] Ph. Jacquod, I. Adagdeli, and C. W. J. Beenakker, Phys. Rev. Lett. 89, 154103

(2002); Ph. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Phys. Rev. E 64,

055203(R) (2001).

[49] F. M. Cucchietti, C. H. Lewenkopf, E. R. Mucciolo, H. M. Pastawski, and R. O.

Vallejos, Phys. Rev. E 65, 046209 (2002).

[50] F. Haake, Quantum Signature of Chaos (Springer, 2001).

[51] Tsampikos Kottos and Uzy Smilansky, Phys. Rev. Lett. 79, 4794 (1997); ibid. 85,

968 (2000).

[52] S. Müller, S. Heusler, P. Braun, F. Haake and A. Altland, Phys. Rev. Lett. 93,

014103 (2004).

[53] S. Heusler, S. Müller, A. Altland, P. Braun, and F. Haake, Phys. Rev. Lett. 98,

044103 (2007).

[54] M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001).

[55] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, M. G. Raizen, Phys.

Rev. Lett. 75, 4598 (1995).

[56] W. H. Oskay, D. A. Steck, V. Milner, B. G. Klappauf and M. G. Raizen, Optics

Communications 179, 137 (2000).

[57] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982);

D. R. Grempel, R. E. Prange and S. Fishman, Phys. Rev. A 29, 1639 (1984).

[58] Ya. B. Zeldovich, Sov. Phys. JETP 24, 1006 (1967).

[59] F. M. Izrailev and D. L. Shepelyansky, Teor. Mat. Fiz. 43, 417 (1980).

[60] H. Weyl, Math. Ann. 77, 313 (1916).

[61] E. P. Wigner, Ann. Math. 62, 548 (1955); ibid. 65, 203 (1957).

[62] M.R. Zirnbauer, J. Math. Phys. 37, 4989 (1996).



BIBLIOGRAPHY 123
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